浏览全部资源
扫码关注微信
1. 南京理工大学 机械工程学院,江苏 南京,中国,210094
2. 南京航空航天大学仿生结构与材料防护研究所,江苏 南京,210016
收稿日期:2015-04-20,
修回日期:2015-05-27,
纸质出版日期:2015-11-14
移动端阅览
杨利军, 朱丽, 朱晓阳等. 微流体脉冲惯性喷射技术制备微电极[J]. 光学精密工程, 2015,23(10z): 291-296
YANG Li-jun, ZHU Li, ZHU Xiao-yang etc. Fabrication of microelectrodes based on microfluidic pulse inertial jetting technology[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 291-296
杨利军, 朱丽, 朱晓阳等. 微流体脉冲惯性喷射技术制备微电极[J]. 光学精密工程, 2015,23(10z): 291-296 DOI: 10.3788/OPE.20152313.0291.
YANG Li-jun, ZHU Li, ZHU Xiao-yang etc. Fabrication of microelectrodes based on microfluidic pulse inertial jetting technology[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 291-296 DOI: 10.3788/OPE.20152313.0291.
基于微流体脉冲惯性喷射技术搭建了微电极的按需喷射制备系统。以纳米银导电墨水为喷射材料
将其以一定的重叠率按需微喷射到经过洁净处理的盖玻片基底表面上
形成微电极图形;然后将制备有微电极图形的玻片置于恒温干燥箱
以140℃烧结25 min后进行固化
制得微电极。实验研究了微喷嘴内径和驱动电压对液滴直径的影响以及液滴直径和重叠率对微电极图形宽度的影响。最后
制备了任意图形的微电极
并对微电极导电性能的均匀性和微电极的稳定性进行了检测。实验结果表明
采用微流体脉冲惯性喷射技术制备微电极的方法制备过程简单、成本较低、基底不需进行表面处理
制备的微电极几何尺寸可控
导电性能均匀
具有较好的形貌和电阻稳定性。
A fabrication system for microelectrodes was set up based on the microfuidic pulse inertial jetting on-demand technology. The conductive ink was used as a jetting meterial and it was jetted on a cleaned cover glass substrate to form the designed microelectrode pattern in a certain overlap rate. Then the pattern on the cover glass substrate was sintered to form a microelectrode in an oven at 140℃ for 25 min. The influences of the micro-nozzle diameter and driving voltage on the droplet diameter were researched
as well as the influences of droplet diameter and the overlap rate on the width of the microelectrode pattern. Finally
several different microelectrodes with various shapes were fabricated. The conductive uniformity and the stability of the microelectrodes were measured. The experimental results indicate that the fabrication of microelectrodes based on the microfuidic pulse inertial jetting on-demand technology has many advantages on the simple fabrication process
lower cost and non-surface treatment. Furthermore
the microelectrodes have several merits such as size controllability
good conductivity uniformity and the stability of morphology and resistance.
WANG J, PUMERA M, CHATRATHI M P, et al.. Single-channel microchip for fast screening and detailed identification of nitroaromatic explosives or organophosphate nerve agents[J]. Analytical chemistry,2002,74(5):1187-1192.
GE L, YAN J, SONG X, et al.. Three-dimensional paper-based electrochemiluminescence immunodevice for multiplexed measurement of biomarkers and point-of-care testing[J]. Biomaterials, 2012, 33(4):1024-1031.
HARRELL C C, CHOI Y, HORNE L P, et al.. Resistive-pulse DNA detection with a conical nanopore sensor[J]. Langmuir,2006,22(25):10837-10843.
罗怡,刘冲,刘军山,等. 集成Pt电极电化学微流控芯片制作工艺研究[J].中国机械工程, 2005,16(4):94-95. LUO Y, LIU CH, LIU J SH, et al..Fabrication of electrochemical microfluidic chip integrated Pt micro electode[J].China Mechanical Engineering,2005,16(4):94-95.(in Chinese)
ZHANG Q, XU J J, LIU Y, et al.. In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems[J]. Lab on a Chip, 2008, 8:352-357.
陈志锋,高云华,李成武,等.塑料芯片毛细管电泳电化学检测系统及其性能评价[J].高等学校化学学报,2004,25(12):2253-2255. CHEN Z F,GAO Y H, LI C W, et al.. Configuration and property evaluation of a novel plastic capillary electrophoresis microchip with electrochemical detection System[J]. Chemical Journal of Chinese University, 2004,25(12):2253-2255.(in Chinese)
LEE S H, LEE D J, LEE C K, et al.. Direct fabrication of microelectrodes on a polymer substrate using selective ultrashort pulsed laser ablation of inkjet-printed Ag lines[J]. Phys. Status Solidi A, 2012, 209(11):2142-2146.
KIM Y, REN X, KIM J W, et al.. Direct inkjet printing of micro-scale silver electrodes on polydimethylsiloxane(PDMS) microchip[J]. Journal of Micromechanics and Microengineering,2014,24(11):115010.
章维一,侯丽雅.微流体数字化的科学与技术问题(Ⅰ):概念、方法和效果[J].科技导报,2005,23(8):4-9. ZHANG W Y, HOU L Y, Scientific and technological problems of digitalization of microfluids(PartⅠ):concepts, methods and results[J]. Science & Technology Review, 2005, 23(8):4-9.(in Chinese)
章维一, 侯丽雅.微流体数字化的科学与技术问题(Ⅱ):物质数字化及物质能量信息统一数字化概念研究[J].科技导报,2006, 24(3):41-47. ZHANG W Y, HOU L Y, Scientific and technological problems of digitalization of microfluids(PartⅡ):Conceptual study of digitalization of matter-energy-information[J]. Science & Technology Review, 2006,24(3):41-47.(in Chinese)
杨眉,朱丽,侯丽雅,等.数字化微喷射用玻璃基组合微喷嘴设计及应用[J].光学 精密工程,2012,20(7):1580-1586. YANG M, ZHU L, HOU L Y, et al..Design and experi-ment of vitreous combined micronozzles used in digital micro injection[J]. Opt. Precision Eng., 2012, 20(7):1580-1586.(in Chinese)
王洪成,侯丽雅,章维一,等.驱动电压波形修圆对微流体脉冲惯性力和驱动效果的影响[J].光学 精密工程,2012,20(10):2251-2259. WANG H CH,HOU L Y,ZHANG W Y, et al..Influence of rounded driving voltage waves on micro-fluidic pulse inertial force and driving effects[J].Opt. Precision Eng., 2012,20(10):2251-2259.(in Chinese)
朱晓阳,侯丽雅,郑悦,等.微流体数字化技术制备聚合物微透镜阵列[J].光学 精密工程,2014,22(2):360-368. ZHU X Y,HOU L Y,ZHENG Y, et al..Fabrication of polymer micro-lens array by micro-fluid digitalization[J]. Opt. Precision Eng., 2014,22(2):360-368.(in Chinese)
0
浏览量
206
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构