浏览全部资源
扫码关注微信
江苏大学 机械工程学院,江苏 镇江,212013
收稿日期:2015-03-15,
修回日期:2015-05-01,
纸质出版日期:2015-11-14
移动端阅览
张洪峰, 王霄, 钱清等. 激光高速冲击点焊的工艺实验[J]. 光学精密工程, 2015,23(10z): 297-304
ZHANG Hong-feng, WANG Xiao, QIAN Qing etc. Technological experiments of laser high-speed impact spot welding[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 297-304
张洪峰, 王霄, 钱清等. 激光高速冲击点焊的工艺实验[J]. 光学精密工程, 2015,23(10z): 297-304 DOI: 10.3788/OPE.20152313.0297.
ZHANG Hong-feng, WANG Xiao, QIAN Qing etc. Technological experiments of laser high-speed impact spot welding[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 297-304 DOI: 10.3788/OPE.20152313.0297.
将激光诱导冲击波作为一种驱动加载方式运用于高速冲击点焊
以研究厚度小于100
m的异种金属箔板组合的固态点焊连接。设计并搭建了激光高速冲击点焊实验平台
实验中选择30
m的钛箔和T2紫铜为复板
100
m厚的铝箔为基板
对影响激光高速冲击点焊连接质量的主要工艺参数
包括碰撞角度、复板的飞行距离和冲击速度进行理论和实验研究。利用显式有限元软件AUTODYN中的光滑粒子流体动力学(SPH)法数值模拟了激光高速冲击点焊的焊接过程
结果显示随着飞行距离和冲击速度增大
焊接界面的形貌逐渐由平直状过渡到微波状
以至变成漩涡状
最后成功复制出了中心未连接区域和环状焊接区域。此外
通过观测非连接区域和焊接区域的剪切应力和有效塑性变形
发现当复板和基板碰撞界面处的剪切应力方向相反
且有效塑性变形大于0.4时
才能实现有效的固态冶金结合。
A solid state spot welding technique based on the laser induced shock waves was proposed to achieve the solid-state spot welding between dissimilar metal combinations with the thickness less than 100
m. An experimental platform of laser impact spot welding was designed and built. In welding
30
m Ti and T2 pure copper were chosen as the flyer plates
and 100
m Al as the base plate. Parameters including collide angle
impact velocity and the standoff distance
which mainly affect the welding quality
were investigated theoretically and experimentally. The Smooth Particle Hydrodynamic(SPH) method in AUTODYN was applied to simulation of laser impact spot welding process. It is shown that with the increases of impact velocity and standoff distance
the interface morphology turns from straight to small wavy and finally to vortex wavy. Finally
a central un-bonded region and a circular bonded region are duplicated. Moreover
it is shown that when the shear stress direction is opposite and the effective plastic strain is above 0.4 at the interfaces the successful bond can be achieved.
CHIZARI M, AL-HASSANI S S, BARRETT L M, et al.. Experimental and numerical study of water jet spot welding[J]. Journal of Materials Processing Technology, 2008, 198(1-3):213-219.
TURGUTLU A, AL-HASSANI S S, AKYURT M. Experimental investigation of deformation and jetting during impact spot welding[J]. International Journal of Impact Engineering, 1995, 16(5-6):789-799.
SALEM S A. Some aspects of liquid/solid interaction at high speeds[D]. Columbus:UMIST, 1980.
TURGUTLU A, AKYURT M. Spot welding of foils by water jets[J]. Arabian Journal for Science and Engineering, 1997, 22(1):143-148.
TURGUTLU A, AL-HASSANI S S, AKYURT M. The influence of projectile nose shape on the morphology of interface in impact spot welds[J]. International Journal of Impact Engineering, 1996, 18(6):657-669.
王霄,邱唐标,顾宇轩,等. 激光间接冲击下钛箔的微成形特性[J]. 光学 精密工程, 2015,23(3):632-638. WANG X, QIU T B, GU Y X, et al.. Micro-forming properties of Ti foil under laser indirect shock[J]. Opt.Precision Eng., 2015,23(3):632-638.(in Chinese)
刘会霞,张强,顾春兴,等. 激光驱动飞片微塑性温成形实验研究[J]. 中国激光, 2014,41(7):0703011. LIU H X, ZHANG Q, GU CH X, et al..Experimental investigation on warm micro-forming by laser-driven flyer[J]. Chinese J. Lasers, 2014,41(7):0703011.(in Chinese)
周建忠,戴磊,黄舒,等. 激光冲击驱动飞片成形性能[J]. 光学 精密工程, 2014,22(7):1743-1750. ZHOU J Z, DAI L, HUANG S, et al.. Formation of laser shock-induced high speed flyers[J].Opt.Precision Eng., 2014,22(7):1743-1750.(in Chinese)
王霄,张迪,顾春新,等. 激光冲击软模大面积微弯曲成形方法[J]. 光学 精密工程,2014,22(9):2292-2298. WANG X, ZHANG D, GU C X, et al..Large area micro bending method by soft punch under laser shock wave based on multi-groove mold[J].Opt.Precision Eng., 2014,22(9):2292-2298.(in Chinese)
陆萌萌,刘会霞,沈宗宝,等. 激光驱动飞片复杂轮廓多孔微冲裁实验及模拟[J]. 中国激光, 2014, 41(4):0403004. LU M M, LIU H X, SHEN Z B, et al..Experiment and simulation of multihole micro-punching with complex layouts by laser-driven flyer[J]. Chinese J. Lasers, 2014, 41(4):0403004.(in Chinese)
LIU H X, SHEN Z B, WANG X, et al..Feasibility investigations on a novel micro-embossing using laser-driven flyer[J]. Optics & Laser Technology, 2012, 44(6):1987-1991.
BARRADAS S, GUIPONT V, MOLINS R, et al.. Laser shock flier impact simulation of particle substrate interactions in cold spray[J]. Journal of Thermal Spray Technology, 2007, 16(4):548-556.
DAEHN G S, LIPPOLD J C. Low temperature spot impact welding driven without contact[P], US 8084710 B2, 2009.
ZHANG Y, BABU S S, PROTHE C, et al.. Application of high velocity impact welding at varied different length scales[J]. Journal of Materials Processing Technology, 2011, 211(5):944-952.
顾宇轩,王霄,沈宗宝,等. 基于强脉冲激光的Ti/Al冲击点焊实验研究[J]. 中国激光,2015,42(5):0503003. GU Y X, WANG X, SHEN Z B, et al.. Experimental study of Ti/Al impact spot welding by intense laser pulse induced shock waves[J]. Chinese J Lasers, 2015, 42(5):0503003.(in Chinese)
WANG X, ZHENG Y Y, LIU H X, et al.. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method[J]. Materials & Design, 2014, 35:210-219.
WANG X, GU Y X, QIU T B, et al.. An experimental and numerical study of laser impact spot welding[J]. Materials & Design, 2015, 65:1143-1152.
GODUNOV S K, DERIBAS A A, ZABRADIN A V, et al.. Hydrodynamic effects in colliding solids[J]. Compuational Physics, 1970, 5:517-539.
郑远远. 高速冲击下金属焊接能力的研究[D]. 镇江:江苏大学, 2012. ZHENG Y Y. Research on Metal Welding by High Velocity Impact[D]. Zhenjiang:Jiangsu University, 2012.
王耀华. 金属板材爆炸焊接研究与实践[M]. 北京:国防工业出版社, 2007. WANG Y H. Research and practice of explosive welding of metal plates[M]. Beijing:National Defence Industry Press, 2007.(in Chinese)
MOUSAVI A A, BURLEY S J, AL-HASSANI S S. Simulation of explosive welding using Williamsburg equations of state to model low detonation velocity explosive[J]. International Journal of Impact Engineering, 2005, 31(6):719-734.
AKBARI-MOUSAVI S A, BARRETT L M, AL-HASSANI S S. Explosive welding of metal plates[J]. Journal of Materials Processing Technology, 2008, 202(1):224-239.
0
浏览量
283
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构