浏览全部资源
扫码关注微信
1. 北京航空航天大学惯性技术重点实验室新型惯性仪表与导航系统技术国防重点学科实验室 北京,100191
2. 北京航空航天大学仪器科学与光电工程学院 北京,100191
收稿日期:2015-03-20,
修回日期:2015-05-17,
纸质出版日期:2015-11-14
移动端阅览
周向阳, 岳海潇, 贾媛等. 航空遥感惯性稳定平台的改进型小脑模型神经网络/比例微分复合控制[J]. 光学精密工程, 2015,23(10z): 305-312
ZHOU Xiang-yang, YUE Hai-xiao, JIA Yuan etc. CMAC/PD-based compound control of inertially stabilized platform for aerial remote sensing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 305-312
周向阳, 岳海潇, 贾媛等. 航空遥感惯性稳定平台的改进型小脑模型神经网络/比例微分复合控制[J]. 光学精密工程, 2015,23(10z): 305-312 DOI: 10.3788/OPE.20152313.0305.
ZHOU Xiang-yang, YUE Hai-xiao, JIA Yuan etc. CMAC/PD-based compound control of inertially stabilized platform for aerial remote sensing[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 305-312 DOI: 10.3788/OPE.20152313.0305.
针对航空遥感惯性稳定平台高稳定和高精度控制要求
研究了基于变置信度的改进型小脑模型神经网络控制器(CMAC)和比例微分(PD)控制器的复合控制方法。首先
建立了航空遥感三轴惯性稳定平台框架伺服系统模型。其次
建立了改进型CMAC/PD复合控制器
将改进型CMAC控制器和PD控制器分别加入到惯性稳定平台伺服系统的前馈通道和反馈通道
以提高控制系统精度。最后
整定伺服系统及改进型CMAC/PD复合控制器参数。实验结果表明:使用改进型CMAC/PD复合控制算法后
平台的俯仰框架角位置误差峰值为0.2154°
角位置RMS值为0.0775°
相比PID控制器分别减小了42.97%和29.86%。与传统PID控制相比
改进型CMAC/PD复合控制方法可显著抑制多源扰动对稳定平台伺服系统的影响
从而有效提高系统控制精度。
For improving the standard of stability and precision of an Inertially Stabilized Platform(ISP) for aerial remote sensing
this paper introduces a modified Cerebellar Model Articulation Controller(CMAC)/Proportional and Derivative controller(PD) compound control method of the ISP frame servo system for aerial remote sensing based on variable confidence coefficient. First
the frame servo system model of ISP three-axis is established for aerial remote sensing. Then the modified CMAC controller and the PD controller are established. In order to enhance the precision of servo system
the modified CMAC controller and PD controller are respectively added in the feedforward and feedback paths. Finally
the parameters of modified CMAC/PD compound controller are adjusted. Experimental results indicate that the pitch frame angular position maximum precision of the system's by modified CMAC/PD compound controller is 0.2154°
and the RMS of angular position is 0.0775°. As compared to the normal PID control method
they respectively reduce by 42.97% and 29.86%. The mentioned modified CMAC/PD compound control method of ISP frame servo system observably reduces the influence of unknown disturbances
and efficiently improves the control precision of ISP servo system for aerial remote sensing.
ZHOU X Y, GONG G H, LI J P, et al.. Decoupling control for a three-axis inertially stabilized platform used for aerial remote sensing[J]. Transactions of the Institute of Measurement and Control, 2014, Doi:10.1177/0142331214557667.(published online)
HILKERT J M. Inertially stabilized platform technology:concepts and principles[J]. IEEE Control Systems Magazine, 2008(12):26-46.
朱明超,刘慧,张鑫,等. 惯性稳定平台自适应前馈控制[J]. 光学 精密工程, 2015, 23(1):141-148. ZHU M CH, LIU H, ZHANG X, et al.. Adaptive feed-forward control for inertially stabilized platform[J]. Opt. Precision Eng., 2015, 23(1):141-148.(in Chinese)
ZHOU X Y, ZHANG H Y, YU R X, Decoupling control for two-axis inertially stabilized platform based on an inverse system and internal model control[J]. Mechatronics, 2014(24):203-1213.
周向阳,赵强. 航空遥感三轴惯性稳定平台双速度环控制[J]. 中国惯性学报,2013,21(4):439-445. ZHOU X Y, ZHAO Q. Dual rate-loop method of three-axis inertially stabilized platform for aerial remote sensing application[J]. Journal of Chinese Inertial Technology, 2013, 21(4):439-445.(in Chinese)
MARTIN R., ZDENE K.. Vibration rejection for inertially stabilized double gimbal platform using acceleration feedforward[C]. 2011 IEEE International Conference on Control Applications(CAA). Denver, 2011:363-368.
李贤涛,张葆,沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离[J]. 光学 精密工程, 2014, 22(8):2223-2231. LI X T, ZHANG B, SHEN H H. Improved if isolation degree of aerial photoelectrical stabilized platform based on ADRC[J]. Opt. Precision Eng., 2014, 22(8):2223-2231.(in Chinese)
ALBUS J S. A new approach to manipulator control:The cerebellar model articulation controller(CMAC)[J]. Tran. ASME J. Dyn. Syst. Meas. Control, 1975, 97(3):220-227.
ALBUS J S. Data storage in cerebellar model articulation controller(CMAC)[J]. Tran. ASME J. Dyn. Syst. Meas. Control, 1975, 97(3):228-233.
刘桂雄,林绪虹. 基于CMAC的图像融合快速算法[J]. 光学 精密工程, 2008, 16(5):950-956. LIU G X, LIN X H. Image fusion fast algorithm based on CMAC[J]. Opt. Precision Eng., 2008, 16(5):950-956.(in Chinese)
GE Y Q, LUO X P, DU P Y. A new improved CMAC neural network[C]. 2010 IEEE Control and Decision Conference(CCDC), 2010:3271-3274.
刘金琨. 先进PID控制及其MATLAB仿真(第二版)[M]. 北京:电子工业出版社,2008:117-129. LIU J K. Advanced PID control methods and MATLAB simulations(Second edition)[M]. Beijing:Publishing house of electronics industry, 2008:117-129.
王刚,李建府,朱荣刚. CMAC改进算法在电动负载模拟器的应用[J]. 电光与控制,2011,18(4):72-76. WANG G, LI J F, ZHU R G. Application of an improved arithmetic based on CMAC in electrical load simulator[J]. Electronics Optics & Control, 2011, 18(4):72-76.(in Chinese)
YANG B, BAO R, HAN H T. Robust hybrid control based on PD and novel CMAC with improved architecture and learning scheme for electric load simulator[J]. IEEE Transactions on Industrial Electronics, 2014, 61(10):5271-5279.
苏刚,陈增强,袁著祉. 小脑模型关节控制器(CMAC)理论及应用[J]. 仪器仪表学报, 2003, 24(4):269-273. SU G, CHEN Z Q, YUAN ZH ZH. The theory and application of CMAC[J]. Chinese Journal of Scientific Instrument, 2003, 24(4):269-273.
LIN C M, PENG Y F. Adaptive CMAC-based supervisory control for uncertain nonlinear systems[J]. IEEE Tran. On Syst, Man, & Cybernetics-Part B:Cybernetics, 2004, 34(2):1248-1260.
刘媛,王卫红. 基于CMAC的伺服系统控制研究[J]. 航空学报,2006,27(3):515-519. LIU Y, WANG W H. CMAC controller research for servo system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(3):515-519.(in Chinese)
0
浏览量
487
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构