浏览全部资源
扫码关注微信
南京工程学院 机械工程学院,江苏 南京,211167
收稿日期:2015-04-17,
修回日期:2015-05-20,
纸质出版日期:2015-11-14
移动端阅览
冯勇, 贾丙辉, 贾晓林. 高速切削时温度影响因素的响应面实验[J]. 光学精密工程, 2015,23(10z): 388-395
FENG Yong, JIA Bing-hui, JIA Xiao-lin. Response surface experiments of effect factors on temperature in high speed cutting[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 388-395
冯勇, 贾丙辉, 贾晓林. 高速切削时温度影响因素的响应面实验[J]. 光学精密工程, 2015,23(10z): 388-395 DOI: 10.3788/OPE.20152313.0388.
FENG Yong, JIA Bing-hui, JIA Xiao-lin. Response surface experiments of effect factors on temperature in high speed cutting[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 388-395 DOI: 10.3788/OPE.20152313.0388.
利用响应面法研究了高速切削AISI1045钢过程中主要切削参数变化对切削温度的影响。建立了高速切削温度测量实验系统;然后
在斜角切削机理分析基础上
应用Box-Behnken Design(BBD)响应面实验方法设计了考虑切削速度、进给量、轴向切深和径向切宽的4因素3水平实验;最后
分析了各因素对高速切削温度的影响及温度变化范围。结果表明:进给量约为0.05~0.11 mm时
随切削速度增加
切削温度缓慢升高;进给量大于0.11 mm时
随切削速度的增加
切削温度呈缓慢降低现象;保持切削速度不变
随轴向切深增大
切削温度呈线性增大;当轴向切深小于1.5 mm时
随径向切宽的增加切削温度先变小后变大;当轴向切深大于1.5 mm时
切削温度随径向切宽的增大线性增大。综合分析表明
进给量和轴向切深的变化对切削温度影响较显著。
On the basis of the response surface method
the influences of main high speed cutting factors on cutting temperatures in AISI1045 steel cutting processing were researched. A high-speed cutting temperature measurement test system was established. The tests with four factors and three levels were designed by applying Box-Behnken Design(BBD) response surface experimental design method considering the cutting speed
feed
axial cutting depth and the radial cutting width. Then
the effects of various factors on high-speed cutting temperature and temperature range were analyzed. Results show that when the feed is 0.05-0.11 mm
the cutting temperature rises slowly with cutting speed increasing; when the feed is greater than 0.11 mm
the cutting temperature decreases slowly with cutting speed increasing. However
when cutting speed maintains unchanged
the cutting temperature increases linearly with axial cutting depth increasing. When axial cutting depth is less than 1.5 mm
the cutting temperature first decreases then increases with radial cutting width increasing; when axial cutting depth is greater than 1.5 mm
the cutting temperature increases with radial cutting width increasing linearly. Comprehensive analysis shows that feed and axial cutting depth effect on cutting temperature changes more significant.
SUHAIL A. H, ISMAIL N., WONG S.V., et al.. Workpiece surface temperature for in-process surface roughness prediction using response surface methodology[J]. Journal of Applied Sicences,2011,11(2):308-315.
陈明,文亮,姜丽萍,等. CFRP 单向层合板正交切削温度建模与预测[J]. 航空学报, 2015, 36:DOI:10.7527/S1000-6893.2015.0037. CHEN M, WEN L, JIANG L P,et al.. A prediction model for cutting temperature while orthogonally machining CFRP unidirectional laminates[J]. Acta Aeronautica et Astronautica Sinica, 2015,36:DOI:10.7527/S1000-6893.2015.0037
CHEN Ming SF, WANG H L. Experimental research on the dynamic characteristics of the cutting temperature in the process of high-speed milling[J]. Journal of Materials Processing Technology, 2003,(138):468-471.
LONGBOTTOM J M. A Review of research related to Salomon's hypothesis on cutting speeds and temperatures[J]. International Journal of Machine Tools & Manufacture, 2006,(46):1740-1747.
刘东,陈五一,徐宏海,等. 钛合金TC4切削温度变化规律仿真研究[J]. 系统仿真学报, 2009, 21(22):7342-7345. LIU D, CHEN W Y,XU H H, et al.. Research on regulation of cutting temperature variation during cutting titanium alloy TC4[J]. Journal of System Simulation, 2009, 21(22):7342-7345.
TRIGGER K J, CHAO B T. An analytical evaluation of metal-cutting temperatures[A]. In 1950.
鲍永杰, 高航, 梁延德, 等. 碳纤维/环氧树脂复合材料钻削温度场建模与试验[J]. 兵工学报, 2013, 34(7):846-852. BAO Y J, GAO H, LIANG Y D, et al..Modeling and experimental research on drilling temperature field of carbon fiber/epoxy reinforced composites[J]. ACTA Armamentarii, 2013, 34(7):846-852.(in Chinese)
鲍永杰,高航,马海龙, 等. 单向 C/E 复合材料磨削制孔温度场模型的研究[J]. 机械工程学报, 2012, 48(1):169-176. BAO Y J, GAO H, MA H L, et al.. Research ontemperature field model during grindingdrilling of unidirectional carbon/epoxy composites[J]. Journal of Mechanical Engineering, 2012, 48(1):169-176.(in Chinese)
SREEJITH P S, KRISHNAMURTHY R, MALHOTRA S K.Effect of specific cutting pressure and temperature during machining of carbon/phenolic ablative composite using PCBN tools[J]. Journal of Materials Processing Technology, 2007, 183(1):88-95.
BURYTA D, SOWERBY R, YELLOWLEY I. Stress distributions on the rake face during orthogonal machining[J]. International Journal of Machine Tools & Manufacture, 1994,34:721-739.
FENG Y, ZHENG L, WANG ML, et al.. Research on cutting temperature of workpiece in milling process based on WPSO[J]. Int. J. Adv. Manuf. Technol., 2015,79:427-435.
冯勇,贾丙辉,贾晓林,等. 基于LS-SVM的高速切削温度预测.2015,(5):110-114. FENG Y, JIA B H, JIA X L, et al.. High Speed Cutting Temperature Prediction Method Based on LS-SVM. 2015,(5):110-114.
PALANIKUMAR K. Application of Taguchi and response surfacemethodologies for surface roughness in machining glass fiber reinforced plastics by PCD tooling[J]. Int. J. Adv. Manuf. Technol.,2008(36):19-27.
0
浏览量
611
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构