浏览全部资源
扫码关注微信
辽宁工业大学 机械工程与自动化学院,辽宁 锦州,121001
收稿日期:2015-04-15,
修回日期:2015-05-20,
纸质出版日期:2015-11-14
移动端阅览
陈雪叶, 李铁川,. 被动式微混合器微通道外形及障碍物布局[J]. 光学精密工程, 2015,23(10z): 403-409
CHEN Xue-ye, LI Tie-chuan,. Micro-channel shapes and obstacle layout in passive micromixers[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 403-409
陈雪叶, 李铁川,. 被动式微混合器微通道外形及障碍物布局[J]. 光学精密工程, 2015,23(10z): 403-409 DOI: 10.3788/OPE.20152313.0403.
CHEN Xue-ye, LI Tie-chuan,. Micro-channel shapes and obstacle layout in passive micromixers[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 403-409 DOI: 10.3788/OPE.20152313.0403.
开展了通过优化微通道形状和障碍物布局来增强被动式微混合器混合效果的研究。研究显示
改变微通道形状和设置障碍物
从而提高被动式微混合器中的混沌对流
是提高样品混合效率的简单有效方法。对6种不同形状的微通道完成了有限元分析仿真与数值仿真。结果显示:不同结构按混合效率由高到低依次排列为:方波型
>
正弦型
>
折线型
>
T型
>
口型
>
连环型。最后
在最好的微通道外形-方波型微通道内对比了障碍物布局对微混合器混合效率的影响
得到了非对称多组障碍物布局的最优结构
此结构可适用
Pe
数为750以下的流体。仿真结果表明
微通道形状和障碍布局的优化设计可以有效提高被动式微混合器的混合效率。
This paper focuses on optimizing the micro-channel shapes and obstacle layouts in the micro-channel to enhance the mixing effect of a passive micromixers. Experiments show that changing the channel shape and setting obstacles can enhance chaotic convection in the passive mixer
and they are simple methods to improve the sample mixing efficiency. Six kinds of channel shapes and two kinds of obstacle layouts have completed and simulated. The mixing efficiency in sequence is:the square-wave
>
the multi-wave
>
the zigzag
>
the T-shape
>
the mouth shape
>
the loop. Finally
the obstacle layout in the best microchannel-the square-wave microchannel is compared and its effect on the mixing effeciency of the mixer is studied. So the asymmetry layout of obstacles has been obtained
which can be applied to the fluid mixing at
Pe
less than 750. Simulation results show that optimized design of the channel shape and obstacle layout can improve effectively sample mixing efficiency in the passive micromixer. It is verified that the optimization of the structure is an effective design of microfluidic devices.
范建华, 邓永波, 宣明, 等. PC微流控芯片黏接筋与溶剂的协同辅助键合[J]. 光学 精密工程, 2015, 23(3):708-713. FAN J H, DENG Y B, XUAN M, et al.. Synergistic bonding process of solvent and tendon for PC-based microfluidic chips[J]. Opt. Precision Eng., 2015, 23(3):708-713.
许晓威,陈立国,贺文元,等. 数字微流控芯片半月形驱动电极的设计[J]. 光学 精密工程, 2014, 22(3):633-640. XU X W, CHEN L G, HE W Y, et al.. Design of crescent driving electrode for digital electrowetting-on-dielectric device[J]. Opt. Precision Eng., 2014, 22(3):633-640.
赵天, 杨志刚, 刘建芳, 等. 利用压电微泵驱动和脉动混合可控合成金纳米粒子[J]. 光学 精密工程, 2014, 22(4):904-910. ZHAO T, YANG Z G, LIU J F, et al. Controlled synthesis of gold nanoparticles based on PZT micropump and pulsating mixing[J]. Opt. Precision Eng., 2014, 22(4):904-910.
KAMHOLZ A E,WEIGL B H,FINLAYSON B A,et al. Quantitative analysis of molecular interaction in microfluidic channel:The T-sensor[J]. Anal. Chem.,1999:71:5340-5347.
ISMAGILOV R F,STROOCK A D,KENIS P J A,et al. Experimental and theoretical scaling laws for transverse diffusion broadening in two-phase laminar flows in microchannels[J]. Appl. Phys. Lett.,2000,76:2376-2378.
WONG S H,WARD M. Micro T-mixer as a rapid mixing micromixer[J]. Sensors and Actuators B,2004,100(3):359-379.
HE B,BURK B J,et al. A picoliter-volume mixer for microfluidic analytical systems[J]. Analytical Chemistry,2001,73(9):1.
MUNSON M S,YAGER P. Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer[J]. Anal. Chim. Acta.,2004,507:63-71.
BESSOTH F G,DEMELLO A J,MANZ A. Microstructure for efficient continuous flow mixing[J]. Anal. Commun.,1999,36:213-215.
CHUNG C K,SHIH T R. Effect of geometry on fluid mixing of the rhombic micromixers[J]. Microfluidic and Nanofluidics,2008,4(5):419-425.
JULIO M,OTTINO S W. Introduction:Mixing in microfluidics[J]. Philosophical of Transactions of the Royal Society of Lon don:Series A,2004,362(1818):923-935.
STROOCK A D,DERTINGER S K W,Ajdari A,et al. Chaotic mixer for microchannels[J]. Science,2002,295:647-651.
KANG TAE GON,SINGH MRITYUNJAY K,et al. Chaotic mixing using periodic and aperiodic sequences of mixing rotocols in a micromixer[J]. Microfluid Nanofluid,2008,4:589-599.
KANG T G,KWON T H. Colored particle tracking method for mixing analysis of chaotic micromixers[J]. J. Micromech Microeng,2004,4:891-899.
LEE W B,WENG C H,Biomedical microdevices synthesis of iron oxide nanoparticles using a microfluidic system[J]. Biomed Microdevices,2009,11:161-171.
TRAN-MINH N, KARLSEN F, DONG T. A Simple and Low Cost Micromixer for Laminar Blood Mixing:Design, Optimization, and Analysis[M]. Biomedical Informatics and Technology, Springer Berlin Heidelberg, 2014:91-104.
CHEN X, LIU C, XU Z. Research on Layout optimization of obstacles in a passive micromixer[J]. Micro and Nanosystems, 2012, 4(2):123-127.
0
浏览量
615
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构