浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点 实验室 超精密光学工程研究中心,吉林 长春,130033
收稿日期:2015-04-13,
修回日期:2015-05-15,
纸质出版日期:2015-11-14
移动端阅览
郭抗, 倪明阳, 孙振等. 具有三自由度的减薄直圆型柔性铰链柔度分析[J]. 光学精密工程, 2015,23(10z): 425-431
GUO Kang, NI Ming-yang, SUN Zhen etc. Compliance analysis for thinned right-circular flexure hinge with three degrees of freedom[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 425-431
郭抗, 倪明阳, 孙振等. 具有三自由度的减薄直圆型柔性铰链柔度分析[J]. 光学精密工程, 2015,23(10z): 425-431 DOI: 10.3788/OPE.20152313.0425.
GUO Kang, NI Ming-yang, SUN Zhen etc. Compliance analysis for thinned right-circular flexure hinge with three degrees of freedom[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 425-431 DOI: 10.3788/OPE.20152313.0425.
针对并联机构中常用的柔性铰链一般需要在多个方向上加工
难以实现与机构一体化的问题
提出了一种减薄的直圆型柔性铰链。该铰链具有三个转动自由度
仅需在一个方向上即可完成加工
便于应用于结构一体化的定位机构中。根据卡氏第二定理
推导了减薄直圆型柔性铰链的柔度公式
利用有限元分析对柔度公式进行了验证
并分析了铰链的结构参数对其柔度的影响。讨论了该型铰链应用时柔度设计的两种情况。结果表明:铰链柔度的理论计算值与有限元分析值的最大偏差在20%以内
对该型铰链柔度影响较大的结构尺寸依次是:厚度
b
、最小槽口间距
t
和圆角半径
r
。以上结论为具有三自由度的减薄直圆型柔性铰链的设计与应用提供了依据。
As common flexures in a parallel mechanism usually are machined in different directions
and it is difficult to integrate with a monolithie configuration
this paper proposes a thinned right-circular flexure hinge with three degrees of freedom. The flexure hinge can be fabricated merely along one direction
and is benefit for the spherical hinge applied in positioning mechanism with monolithic configuration. Based on Castigliano's displacement theorem
the compliance formulas of the thinned right-circular flexure hinge were derived. Finite element analysis was adopted to verify the compliance formulas and analyze the effect of the structure parameters on the compliance of the flexure hinge. Two cases on the compliance design for the application of the flexure hinge were discussed. The results show that the maximum variance between the theoretically calculated compliance value and the finite element analysis compliance value is within 20%. The parameters with the greatest impact on the compliance of the flexure hinge are the thickness
b
the minimum notch spacing
t
and the fillet radius
r
successively. The above conclusions provide principles for the design and application of the thinned right-circular flexure hinge with three degrees of freedom.
吴鹰飞,周兆英. 压电驱动柔性铰链机构传动实现超精密定位[J]. 机械强度,2002,24(2):157-160. WU Y F, ZHOU ZH Y. Using piezoactuator and flexure hinge mechanism to achieve ultra precision position[J]. Journal of Mechanical Strength, 2002, 24(2):157-160.(in Chinese)
BHASKAR D, MRUTHYUNJAVA T S. The Stewart platform manipulator:a review[J]. Mechanism and Machine Theory, 2000, 35:15-40.
金振林,张晓辉,高峰. Stewart型指尖力传感器结构尺寸对其灵敏度的影响研究[J]. 计量学报,2004,25(3):262-265. JIN ZH L, ZHANG X H, GAO F. The effects of design parameters on the sensitivity of fingertip's force transducers based on Stewart platform[J]. Acta Metrological Sinica, 2004, 25(3):262-265.(in Chinese)
孙立宁,董为,杜志江. 基于几何非线性方法的大行程柔性并联机器人位置解[J]. 机械工程学报,2005,41(10):71-74. SUN L N, DONG W, DU ZH J. Kinematics analysis of a parallel manipulator with long travel range flexure hinges based on geometric nonlinear method[J]. Chinese Journal of Mechanical Engineering, 2005, 41(10):71-74.(in Chinese)
DONG W, SUN L N, DU ZH J. Stiffness research on a high-precision, large-workspace parallel mechanism with compliant joints[J]. Precision Engineering, 2008, 32:222-231.
DU ZH J, SHI R CH, DONG W. Kinematics modeling of a 6-PSS parallel mechanism with wide-range flexure hinges[J]. Journal of central south university of technology. 2012, 19:2482-2487.
SHIAU T N, TSAI Y J, TSAI M S. Nonlinear dynamic analysis of a parallel mechanism with consideration of joint effects[J]. Mechanism and Machine Theory, 2008, 43:491-505.
YUN Y, LI Y M. Design and analysis of a novel 6-DOF redundant actuated parallel robot with compliant hinges for high precision positioning[J]. Nonlinear Dynamics, 2010, 61:829-845.
姚建涛,李立建,杨维,等.直圆柔性球铰柔度矩阵的解析计算[J]. 光学 精密工程, 2014, 22(7):1857-1863. YAO J T, LI L J, YANG W, et al. Analytical calculation of compliance matrix for right-circular flexure spherical hinge[J]. Opt. Precision Eng., 2014, 22(7):1857-1863.(in Chinese)
杨春辉,刘平安. 圆弧型柔性球铰柔度设计计算[J]. 工程设计学报,2014,21(4):389-392. YANG CH H, LIU P A. Design and calculation of compliance of arc flexure spherical hinge[J]. Chinese Journal of Engineering Design, 2014, 21(4):389-392.(in Chinese)
杨春辉. 倒圆角直梁型柔性球铰柔度计算与分析[J]. 机床与液压,2013,41(3):55-58. YANG CH H. Calculation and Analysis for Corner-filleted Flexure Spherical Hinge[J].Machine Tool & Hydraulics, 2013, 41(3):55-58.(in Chinese)
侯文峰,张宪民. 双轴矩形截面角圆形柔性铰链回转精度分析[J]. 机械工程学报,2010,46(17):15-21. HOU W F, ZHANG X M. Precision of rotation analysis of two-axis rectangular cross-section corner-filleted flexure hinges[J]. Chinese Journal of Mechanical Engineering, 2010, 46(17):15-21.(in Chinese)
曹锋,焦宗夏. 双轴椭圆柔性铰链的设计计算[J]. 工程力学, 2007, 24(4):178-182. CAO F, JIAO Z X. Design of double-axis elliptical flexure hinges[J]. Engineering Mechanics, 2007, 24(4):178-182.(in Chinese)
DONG W, DU ZH J, SUN L N. Conceptional design and kinematics modeling of a wide-range flexure hinge-based parallel manipulator[C]. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, 2005:4031-4036.
郭抗,巩岩.6-PSS型光学元件精密轴向调节机构[J]. 光学 精密工程, 2013, 21(10):2648-2655. GUO K, GONG Y. Precise axial adjustment mechanism with 6-PSS type of optical elements[J]. Opt. Precision Eng., 2013, 21(10):2648-2655.(in Chinese)
Nicolae Lobontiu. Compliance mechanisms:design of flexure hinges[M]. London:CRC Press, 2003.
YOUNG W C. Roark's formulas for stress and strain[M]. Seventh edition, New York:McGraw-Hill,2002.
0
浏览量
742
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构