浏览全部资源
扫码关注微信
1. 成都精密光学工程研究中心,四川 成都,610041
2. 厦门大学 机电工程系,福建 厦门,361005
收稿日期:2015-04-03,
修回日期:2015-05-10,
纸质出版日期:2015-11-14
移动端阅览
王振忠, 杨旭, 张剑锋等. 光学晶体超精密飞切加工的切削力测试[J]. 光学精密工程, 2015,23(10z): 439-446
WANG Zhen-zhong, YANG Xu, ZHANG Jian-feng etc. Cutting force test for ultra-precision flycutting optical crystal[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 439-446
王振忠, 杨旭, 张剑锋等. 光学晶体超精密飞切加工的切削力测试[J]. 光学精密工程, 2015,23(10z): 439-446 DOI: 10.3788/OPE.20152313.0439.
WANG Zhen-zhong, YANG Xu, ZHANG Jian-feng etc. Cutting force test for ultra-precision flycutting optical crystal[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 439-446 DOI: 10.3788/OPE.20152313.0439.
建立了光学晶体切削力与加工参数关系的预测模型指导光学加工
以减小光学晶体飞切加工中的冲击现象
改善晶体表面质量
减小刀具磨损。根据飞切加工原理
应用响应曲面法建立了光学晶体的切削力预测模型;采用田口正交设计方法设计实验参数
对光学晶体的切削力进行测试实验。然后
运用实验参数求解出切削力模型
采用方差分析技术、
R
2
值及残差分析技术分析了切削力预测模型的正确性
以及各参数对切削力的影响。最后
对切削力预测模型进行实验验证。实验结果表明:预测模型完全满足95%的置信水平
具有良好的预测能力
预测精度达2.5%。切削力随着主轴转速的增大而减小
随着进给速度和切削深度的增大而增大
切削深度和主轴转速是切削力的主要影响因素
进给速度带来的影响最小。在精加工过程中
应尽量增大主轴转速
减小切削深度
在180
μ
m/s范围内
进给速度可根据加工效率进行调整。
To reduce the impact phenomenon in flycutting machining of an optical crystal and to improve the surface quality of the optical crystal
a prediction model was set up experimentally for the relationship between cutting force and machining parameters. Based on the processing principle of flycutting machining
the prediction model for cutting force was built by response surface methodology(RSM). Then
a cutting force experiment for the optical crystal was conducted under the parameters designed by Taguchi method. After that
the prediction model was achieved by using the experimental data
and the accuracy of the model was analyzed by analysis of variance(ANOVA)
R
2
value and residual analysis. In addition
the influences of machining parameters on the cutting force were analyzed. Finally
validation tests were conducted to verify the model. Experimental results demonstrate that the model is adequate at 95% confidence level
and its accuracy is better than 2.5%. Futhermore
the cutting force decreases with the increases of spindle speed
while increases with the increase of feed rate and cutting depth. Moreover
the cutting depth and spindle speed are the main factors on cutting force
whereas the feed rate has the smallest influence. In the finish machining of optical crystal
the spindle speed should be as large as possible
while the cutting depth should be decreased
and the feed rate can be adjusted by processing efficiency under 180
μ
m/s.
PHILIPPE L, CHRISTIAN C, PIERRE D, et al.. Using a design of experiment method to improve KDP crystal machining process[J]. Proceedings of SPIE-the International Society for Optical Engineering, 1998, 3492:814-820.
KAISHI S K. Single point diamond turning of KDP inorganic non-linear optical crystal for laser fusion[J]. Journal of Japan Society Precision Engineering, 1998, 64(10):1181-1185.
张文生, 张飞虎, 董申. 光学脆性材料的金刚石切削加工[J]. 光学 精密工程, 2003, 11(2):139-143. ZHANG W SH, ZHANG F H, DONG SH. Diamond cutting of optical brittle materials[J]. Opt. Precision Eng., 2003, 11(2):139-143.
梁迎春, 陈国达, 孙雅洲, 等. 超精密机床研究现状与展望[J]. 哈尔滨工业大学学报, 2014, 46(5):28-39. LIANG Y CH, CHEN G D, SUN Y ZH, et al.. Research status and prospect for Ultra-precision machine tool[J]. Journal of Harbin Institute of Technology, 2014, 46(5):28-39.(In Chinese)
CHEN M J, LI M Q, CHENG J, et al.. Study on characteristic parameters influencing laser-induced damage threshold of KH2PO4 crystal surface machined by single point diamond turning[J]. Journal of Applied Physics, 2011, 110(11):113103.
LI M Q, CHEN M J, AN C H, et al.. Mechanism of micro-waviness induced KH2PO4 crystal laser damage and corresponding vibration source[J]. Chinese Physics B, 2012, 21(5):050301.
赵岩, 梁迎春, 白清顺, 等. 微细加工中的微型铣床、微刀具磨损及切削力的实验研究[J]. 光学 精密工程, 2007, 15(6):894-592. ZHAO Y, LIANG Y C, BAI Q SH, et al.. Micro-milling machine tool, micro-tool wear and cutting forces in micro-machining[J]. Opt. Precision Eng., 2007, 15(6):894-592.
周明, 邹莱. 金刚石切削黑色金属时刀具磨损机理的摩擦磨损试验[J]. 光学 精密工程, 2013, 21(7):1786-1794. ZHOU M, ZOU L. Tool wear mechanism of diamond cutting of ferrous metals in frictional wear experiment[J]. Opt. Precision Eng., 2013, 21(7):1786-1794.
刘勇, 尹自强, 李圣怡, 等. 微槽结构单点金刚石飞切加工的切削力建模[J]. 国防科技大学学报, 2014, 36(2):175-180. LIU Y, Y Z Q, L SH Y, et al.. Cutting force model for fabrication of micro-grooves by single point diamond flycutting[J]. Journal of National University of Defense Technology, 2014, 36(2):175-180.(In Chinese)
MONTGOMERY D C. Design and Analysis of Experiments[M]. New York:John Wiley, 2001.
BOX G E P, WILSON K B. On the experimental attainment of optimum conditions[J]. Journal of the Royal Statistical Society Series B-statistical Methodology, 1951, 13(1):1-45.
KHURI A I, Mukhopadhyay S. Response surface methodology[J]. Wiley Interdisciplinary Reviews:Computational Statistics, 2010, 2(2):128-149.
RAMESH S, KARUNAMOORTHY L, PALANIKUMAR K. Measurement and analysis of surface roughness in turning of aerospace titanium alloy(gr5)[J]. Measurement, 2012, 45(5):1266-1276.
胡俊峰, 徐贵阳, 郝亚洲. 基于响应面法的微操作平台多目标优化[J]. 光学 精密工程, 2015, 23(4):1096-1104. HU J F, XU G Y, HE Y ZH. Multi-objective optimization of micro-manipulation stage based on response surface method[J]. Opt. Precision Eng., 2015, 23(4):1096-1104.
李昇平, 张恩君. 基于关联度分析的静态和动态稳健性设计[J]. 机械工程学报, 2013, 49(5):130-137. LI SH P, ZHANG EN J. Static and dynamic robust design based on grey relational analysis[J]. Journal of Mechanical Engineering, 2013, 49(5):130-137.
丁日显, 郭成, 张缓缓, 等. 基于田口方法齿圈压板精冲模具参数优化[J]. 材料科学与工艺, 2013, 21(1):92-96. DING R X, GUO CH, ZHUANG Y Y, et al.. Optimization of parameters of fine-blanking die based on the Taguchi method[J]. Materials Science & Technology, 2013, 21(1):92-96.
0
浏览量
900
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构