浏览全部资源
扫码关注微信
北京航空航天大学 机械工程及自动化学院 北京,100083
收稿日期:2015-04-05,
修回日期:2015-05-01,
纸质出版日期:2015-11-14
移动端阅览
傅健, 李晨,. 基于相位线积分恢复的锥束差分相衬CT图像重建[J]. 光学精密工程, 2015,23(10z): 491-496
FU Jian, LI Chen,. Image reconstruction of cone-beam differential phase contrast CT using phase line integral retrieval[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 491-496
傅健, 李晨,. 基于相位线积分恢复的锥束差分相衬CT图像重建[J]. 光学精密工程, 2015,23(10z): 491-496 DOI: 10.3788/OPE.20152313.0491.
FU Jian, LI Chen,. Image reconstruction of cone-beam differential phase contrast CT using phase line integral retrieval[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 491-496 DOI: 10.3788/OPE.20152313.0491.
针对X射线锥束差分相位衬度CT图像的重建
提出了一种基于傅里叶变换微分性质与FDK算法框架的重建技术。基于该技术
差分相衬CT可与现有吸收衬度CT共享相关的重建软、硬件平台。该技术利用提出的相位线积分滤波函数对面阵探测器在每个周向旋转采样视角下采集的二维差分相衬投影逐行滤波
获得物体相位函数的线积分锥束投影数据集。然后
将X射线吸收衬度锥束CT采用的FDK算法应用到恢复的线积分锥束投影数据集
重建物体三维相位图像。最后
基于三维Shepp-Logan模型
对提出的重建技术进行了仿真研究和性能分析。以塑料小球样品的X射线锥束差分相位衬度实验数据集实验验证了该方法的有效性
并与传统方法进行了比较。结果显示新方法归一化均方根重建误差小于0.2586;重建精度高于直接重建88%
满足X射线锥束差分相衬CT高精度图像重建要求。
For the image reconstruction of an X-ray cone-beam differential phase contrast CT
a reconstruction technique based on the derivative property of Fourier transform and the FDK algorithm frame was proposed. By which the X-ray cone-beam differential phase contrast CT and absorption-based CT could share the reconstruction software and hardware. On the basis of the phase line integral filter function
the two dimensional differential contrast projection captured by an area array sensor at each rotation sampling view angle was filtered row by row
and the line integral cone-beam projection dataset of phase function for an object was obtained. Then three dimensional phase contrast CT images were reconstructed by applying the classical absorption-based FDK algorithm to the retrieved dataset. With the well-known three dimensional Shepp-Logan phantom
a numerical simulation was performed to validate the proposed method. Finally
the experimental reconstruction was verified by the dataset of a plastic sphere sample and compared with the current methods. Experimental results indicate that normalized root square error of the new method is less than 0.2586 and the reconstruction accuracy is improved by 88%. It satisfies the high-accuracy reconstruction requirements of X-ray cone-beam differential phase contrast CT.
PFEIFFER F, WEITKAMP T, BUNK O, et al.. Phase retrieval and differential phase-contrast imaging with low-brilliance x-ray sources[J]. Nature Physics, 2006, 2:258-261.
邹晓兵,曾理. 锥束螺旋CT半覆盖扫描重建[J]. 光学 精密工程, 2010, 18(2):434-442. ZOU X B, ZENG L. Half-cover scanning and reconstructing for helical cone-beam CT[J]. Opt. Precision Eng., 2010, 18(2):434-442.(in Chinese)
张峰,江桦,闫镔,等. 锥束CT圆轨迹半覆盖扫描的几何校正[J]. 光学 精密工程, 2013, 21(7):1659-1665. ZHANG F, JIANG H, YAN B, et al.. Geometric calibration for half-cover scanning in circular cone-beam CT[J]. Opt. Precision Eng., 2013, 21(7):1659-1665.(in Chinese)
周凌宏,李翰威,徐圆,等. 锥束CT圆轨道扫描的几何校正[J]. 光学 精密工程, 2014, 22(10):2847-2854. ZHOU L H, LI H W, XU Y, et al.. Geometry calibration for circular trajectory scanning in cone-beam CT[J]. Opt. Precision Eng., 2014, 22(10):2847-2854.(in Chinese)
PFEIFFER F, KOTTLER C, BUNK O, et al.. Hard x-ray phase tomography with low brilliance sources[J]. Physical Review Letters, 2007, 98:108105.
JERJEN I, REVOl V, KOTTLER C, et al.. Phase contrast cone beam tomography with an x-ray grating interferometer[J]. AIP Conference Proceedings, 2010, 1236:227-231.
FU J, LI P, WANG Q L, et al.. A reconstruction method for equidistant fan beam differential phase contrast computed tomography[J]. Physics in Medicine and Biology, 2011, 56:4529-4538.
FU J, VELROYEN A,TAN R B, et al.. A reconstruction method for cone-beam differential x-ray phase-contrast computed tomography[J]. Optics Express, 2012, 20(9):21512-21519.
KöHLER T, BRENDEL B, ROESSL E, et al.. Iterative reconstruction for differential phase contrast imaging using spherically symmetric basis functions[J]. Medical Physics, 2011, 38:4542-4545.
FU J, SCHLEEDE S, TAN R B, et al.. An algebraic iterative reconstruction technique for differential x-ray phase-contrast computed tomography[J]. Zeitschrift für Medizinische Physik,2014, 23(3):186-93.
FU J, HU X H, VELROYEN A, et al.. 3D algebraic iterative reconstruction for cone-beam X-ray differential phase-contrast computed tomography[J]. Plos one, 2015, 10(3):e0117502.
FU J, HU X H, LI C. X-ray differential phase-contrast tomographic reconstruction with a phase line integral retrieval filter[J]. Nuclear Instruments and Methods in Physics Research A, 2015, 778:14-19.
FELDKAMP L A, DAVIS L C, KRESS J W. Practical cone-beam algorithm[J]. Journal of the Optical Society of America, 1984, 1(6):612-619.
SHEPP L A. Computerized tomography and nuclear magnetic resonance[J]. Journal of Computer Assisted Tomography, 1980, 4:94-107.
庄天戈. CT原理与算法[M]. 上海:上海交通大学出版社, 1992. ZHUANG T G. CT Principle and Algorithms[M]. Shanghai:Shanghai Jiaotong University Press, 1992.(in Chinese)
0
浏览量
186
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构