浏览全部资源
扫码关注微信
1. 四川大学电子信息学院,四川 成都,610064
2. 四川大学电气信息学院,四川 成都,610064
收稿日期:2015-05-08,
修回日期:2015-05-19,
纸质出版日期:2015-11-14
移动端阅览
吴炜, 王美洁, 李智等. 基于多传感器的红外图像超分辨[J]. 光学精密工程, 2015,23(10z): 566-575
WU Wei, WANG Mei-jie, LI Zhi etc. Multi-sensor based infrared image super-resolution[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 566-575
吴炜, 王美洁, 李智等. 基于多传感器的红外图像超分辨[J]. 光学精密工程, 2015,23(10z): 566-575 DOI: 10.3788/OPE.20152313.0567.
WU Wei, WANG Mei-jie, LI Zhi etc. Multi-sensor based infrared image super-resolution[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 566-575 DOI: 10.3788/OPE.20152313.0567.
利用可见光图像与红外图像之间存在的互补性和相关性
提出一种基于多传感器的红外图像超分辨方法。首先
利用自适应边缘检测算法提取红外图像边缘
并根据红外图像边缘与可见光图像对应区域的相关程度将红外图像边缘分为相关边缘和非相关边缘;然后
采用二次关系模型对相关边缘区域进行建模
通过该模型利用可见光信息估计红外图像的高频信息;最后
利用迭代反向投影法(IBP)对估计的高分辨率红外图像进行优化获得最终的高分辨率红外图像。实验结果表明
本文算法获得的小区图像
十字路口图像和道路图像的峰值信噪比(PSNR)分别比Choi算法高2.9 dB
1.44 dB和1.11 dB。另外
利用本文算法复原的红外图像具有更好的视觉效果
更逼真、更接近于原始高分辨率图像
复原出的高分辨率红外图像无论在主观效果上还是在客观评价指标上都取得了较好的结果。
On the basis of complementary and relevance between a visible image and an infraved image
a new method which is called multi-sensor super resolution method was proposed. Firstly
an adaptive edge detection algorithm was used to extract the edges of the infrared image
and edges were divided into related edges and nonrelated edges according to the relevance of the edges of infrared image and corresponding visible image area. Then
a quadratic relationship model was built to estimate the high frequency patch of infrared image in the related edge region. At last
Iterative Back Projection(IBP) method was used to optimize the estimated super-resolved image. Experimental results indicate that the Peak Signal to Noise Ratios(PSNR) of the community image
crossroad image and the road image in this method are respectively 2.9 dB
1.44 dB and 1.11 dB
higher than that of the Choi algorithm. Experimental results also show that the proposed method enables reconstructing images to be better visual results and closely resembling the original high resolution images. The reconstructed images achieve better results on subjective visual effects and objective assessments.
PANAGIOTOULOU A,ANASTASSOPPULOUS V. Super-resolution reconstruction of thermal infrared images[C]. Proceeding of the 4th WSEAS International Conference on REMOTE SENSING, Venice, Italy, 2008:40-44.
YANG SH Y, MIN W, CHEN Y G, et al..Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding[J]. Image Processing, 2012,21(9):4016-4028.
LI J, SU B H, XU G Y, et al..Super-resolution reconstruction of sequence image implemented on OMAP3530 platform[C], Audio, Language and Image Processing(ICALIP), Shanghai, 2012:144-148.
GOTO T, KAWAMOTO Y, SAKUTA Y, et al..Learning-based super-resolution image reconstruction on multi-core processor[J].Consumer Electronics,2012,58(3):941-946.
PURKAIT P, CHANDA B. Super resolution image reconstruction through bregman iteration using morphologic regularization[J].Image Processing,2012,21(9):4029-4039.
吴炜,杨晓敏,卿粼波,等. 基于马尔可夫随机场的低分辨率车牌图像复原算法[J]. 计算机应用研究, 2010,27(3):1170-1173. WU W, YNAG X M, QING L B,et al..Low-resolution license plate images restoration based on MRF[J].Application Research of Computers,2010,27(3):1170-1173.(in Chinese)
吴炜,杨晓敏,余艳梅,等. 核偏最小二乘算法的图像超分辨算法[J]. 电子科技大学学报, 2011,40(1):105-110. WU W, YNAG X M, YU Y M, et al..Image super-resolution using KPLS[J]. Journal of University of Electronic Science and Technology of China,2011,40(1):105-110.(in Chinese)
ASSAF Z, SHMUEL P.Multi-sensor super-resolution[C]. Proceeding of the Sixth IEEE Workshop on Applications of Computer Vision,Orlando,FL,USA,2002:27-31.
Multi-sensor fusion of electro-optic and infrared signals for high resolution visible images:PartⅡ[C].Oceans,2012,Hampton Road,VA,2012:1-6.
YANG Q X, YANG R G, JAMES D, et al.. Spatial-depth super resolution for range image[C].In Computer Vision and Pattern Recognition, Minneapolis, MN, 2007:1-8.
DIEBEL J, THRUN S. An application of markov random fields to range sensing[C].Advances in neural information processing systems, In NIPS,Vancouver,British Columbia,Canada,2005:291-298.
KYUHA C, KIM C,KANG M H,et al..Resolution improvement of infrared images using visible image information[J].In IEEE Signal Processing Letters, 2011,18(10):611-614.
YANG X K, LING W S, LU Z K. Just noticeable distortion model and its applications in video coding[J].Signal Processing:Image Communication, 2005,20(7):662-680.
CHOI K,KIM C, RA J B. Infrared image enhancement based on an aligned high resolution visible image[C]. Proceeding of 2010 IEEE 17th International Conference on Image Processing, Hongkong, 2010:3341-3344.
LAI R, YANG Y T, ZHOU H X, et al..Total variation regularized iterative back-projection method for single frame image super resolution[C]. IEEE 11th International Conference on Singal Processing(ICSP),Beijing,2012:931-934.
吕侃,汤心溢,王世勇. 一种基于IBP的红外微扫描图像重建算法[J]. 红外技术, 2011,33(6):345-348. LÜ K, TANG X Y,WANG SH Y.An infrared microscanning image reconstruction algorithm based on IBP[J].Infrared Technology,2011,33(6):345-348.
0
浏览量
666
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构