浏览全部资源
扫码关注微信
1. 天津工业大学 电气工程与自动化学院 天津,300387
2. 天津工业大学电工电能新技术天津市重点实验室 天津,300387
收稿日期:2015-05-18,
修回日期:2015-05-26,
纸质出版日期:2015-11-14
移动端阅览
修春波, 何慧尧,. 基于显著性直方图的粒子滤波跟踪[J]. 光学精密工程, 2015,23(10z): 582-590
XIU Chun-bo, HE Hui-yao,. Particle filter tracking based on saliency histogram[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 582-590
修春波, 何慧尧,. 基于显著性直方图的粒子滤波跟踪[J]. 光学精密工程, 2015,23(10z): 582-590 DOI: 10.3788/OPE.20152313.0583.
XIU Chun-bo, HE Hui-yao,. Particle filter tracking based on saliency histogram[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 582-590 DOI: 10.3788/OPE.20152313.0583.
提出基于显著性直方图模型的粒子滤波跟踪方法
以提高复杂背景下目标跟踪的稳定性。通过对比目标与背景区中像素色调的分布
确定出不同色调等级的显著性权值
从而建立能够突出目标显著性颜色信息的直方图模型。利用显著性直方图模型可抑制背景中与目标具有相似色调的区域对目标识别的干扰
突出了目标特有色调在目标识别中的作用
从而提高目标识别的准确性。实现了基于显著性直方图粒子跟踪算法
并进行了仿真实验。结果表明:该方法适用于复杂背景下的目标跟踪
计算量增加不大。与传统粒子滤波方法相比
本文方法目标定位准确
跟踪过程中粒子尺寸小
从而有效减小了单帧跟踪运算时间
单帧平均跟踪时间小于5 ms
满足跟踪系统实时性的要求。
A particle filter tracking method based on the saliency histogram was proposed to improve the stability of target tracking in a complex background. The saliency weights of hues in the histogram were determined by comparing the distribution of the hues in the target and the background. Then
a saliency histogram was established. The saliency histogram could restrain the disturbance from the background to the target by strengthening the recognition role of the hues existing only in the target. Thus
the accuracy of the target location could be improved. On the saliency histogram
the particle tracking algorithm was implemented and a simulation experiment was performed.The experimental results show that the method proposed in the paper can be applied to performance of the target tracking in the complex background with the low computation cost. Furthermore
the sizes of the particles are small because the model is accurate. As compared with the traditional particle tracking method
the proposed method has low tracking computation time for the single frame
and its average tracking computation time is less than 5 ms
which well satisfies the real-time requirement.
於俊,汪增福,李睿. 一种同步人脸运动跟踪与表情识别算法[J]. 电子学报, 2015,43(2):371-376. YU J, WANG Z F, LI R. A simultaneous facial motion tracking and expression recognition algorithm[J]. Acta Electrocica Sinica, 2015,43(2):371-376.(in Chinese)
修春波,魏世安,万蓉凤. 二维联合特征模型的自适应均值漂移目标跟踪[J]. 光电子·激光,2015,26(2):342-351. XIU CH B, WEI SH A, WAN R F. CamShift target tracking based on two-dimensional joint characteristics[J]. Journal of Optoelectronics·Laser, 2015,26(2):342-351.(in Chinese)
袁广林,薛模根. 基于主分量寻踪的鲁棒视觉跟踪[J]. 电子学报, 2015,43(3):417-423. YUAN G L, XUE M G. Robust visual tracking via principal component pursuit[J].Acta Electronica Sinica, 2015,43(3):417-423.(in Chinese)
李一芒,何昕,魏仲慧,等. 采用降维技术的红外目标检测与识别[J] 光学 精密工程, 2013, 21(5):1297-1303. LI Y M, HE X, WEI ZH H, et al. Infrared target detection and recognition using dimension reduction technology[J]. Opt. Precision Eng., 2013, 21(5):1297-1303.(in Chinese)
孙晓燕,常发亮. 梯度特征稀疏表示目标跟踪[J]. 光学 精密工程, 2013, 21(12):3191-3197. SUN X Y, CHANG F L. Object tracking based on sparse representation of gradient feature[J]. Opt. Precision Eng., 2013, 21(12):3191-3197.(in Chinese)
黄伟国,顾超,朱忠奎. 用于目标识别的PAC-SC形状匹配算法[J]. 光学 精密工程,2013,21(8):2103-2110. HUANG W G, GU CH, ZHU ZH K. PAC-SC shape matching for object recognition[J]. Opt. Precision Eng., 2013, 21(8):2103-2110.(in Chinese)
YI SH Y, HE ZH Y, YOU X G, et al.. Single object tracking via robust combination of particle filter and sparse representation[J]. Signal Processing,2015, 110(SI):178-187.
WALIA G S, KAPOOR R. Intelligent video target tracking using an evolutionary particle filter based upon improved cuckoo search[J].Expert Systems with Applications,2014, 41(14):6315-6326.
修春波,卢少磊,任晓. 基于微分信息融合的Mean Shift改进跟踪算法[J]. 系统工程与电子技术,2014,36(5):1004-1009. XIU CH B, LU SH L, REN X. Improved Mean Shift tracking algorithm based on differential information[J]. Systems Engineering and Electronics, 2014,36(5):1004-1009.(in Chinese)
李翠芸,曹潇男,廖良雄,等. 高斯粒子PHD滤波的多个弱小目标TBD算法[J]. 系统工程与电子技术,2015,37(4):740-745. LI C Y, CAO X N, LIAO L X, et al.. Track-before-detect using Gaussian particle probability hypothesis density[J]. Systems Engineering and Electronics,2015,37(4):740-745.(in Chinese)
张涛,费树岷,李晓东,等. 基于色彩相关直方图的粒子滤波跟踪算法[J]. 系统仿真学报, 2009,21(17):5423-5426. ZHANG T, FEI SH M, LI X D, et al.. Tracking algorithm based on color correlogram using particle filter[J]. Journal of System Simulation, 2009,21(17):5423-5426.(in Chinese)
高秀斌,丁盼盼,蒋长帅,等. 一种基于多特征融合的粒子滤波目标跟踪算法[J]. 扬州大学学报:自然科学版, 2013,16(1):57-60. GAO X B, DING P P, JIANG CH SH, et al.. A particle filter object tracking algorithm based on multi-feature fusion[J]. Journal of Yangzhou University:Natural Science Edition, 2013,16(1):57-60.(in Chinese)
杨欣,刘加,周鹏宇,等.基于多特征融合的粒子滤波自适应目标跟踪算法[J]. 吉林大学学报:工学版, 2015,45(2):533-539. YANG X, LIU J, ZHOU P Y, et al.. Adaptive particle filter for object tracking based on fusing multiple features[J]. Journal of Jilin University:Engineering and Technology Edition, 2015,45(2):533-539.(in Chinese)
0
浏览量
398
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构