浏览全部资源
扫码关注微信
1. 浙江传媒学院电子信息学院,浙江 杭州,310018
2. 中国科学技术大学电子工程与信息科学系, 安徽 合肥 230026
3. 江苏大学电气信息工程学院, 江苏 镇江 212013
收稿日期:2015-05-20,
修回日期:2015-06-01,
纸质出版日期:2015-11-14
移动端阅览
刘金华, 汪彦龙, 戴继生. 联合能量约束下最大信道容量的线性多输入多输出预编码设计[J]. 光学精密工程, 2015,23(10z): 599-604
LIU Jin-hua, WANG Yan-long, DAI Ji-sheng. Linear MIMO precoder optimization with maximizing channel capacity under joint power constraints[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 599-604
刘金华, 汪彦龙, 戴继生. 联合能量约束下最大信道容量的线性多输入多输出预编码设计[J]. 光学精密工程, 2015,23(10z): 599-604 DOI: 10.3788/OPE.20152313.0600.
LIU Jin-hua, WANG Yan-long, DAI Ji-sheng. Linear MIMO precoder optimization with maximizing channel capacity under joint power constraints[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 599-604 DOI: 10.3788/OPE.20152313.0600.
在发射总能量受限或峰值能量受限条件下
线性多输入多输出预编码不能很好地满足实际应用要求。因此
本文从凸优化理论出发
提出了在总能量和最大特征能量联合约束下适用于最大信道容量的线性MIMO预编码设计算法。通过对能量特征向量矩阵和能量特征值的特性研究
推导出了能量特征向量矩阵的闭式解
并提出了一种用于确定能量特征值的二维整数搜索算法。由于各维所需搜索点的数目小于系统发射天线的根数
因此提出的方法计算量小
运算效率较高
系统性能优于传统的
l
p
范数能量约束算法。
When the sum-powers and peak powers of transmit antennas are constrained
the linear precoders of multiple-input multiple-output(MIMO) systems can not well adapt to the practical applications. Therefore
this paper proposes a linear MIMO precoder optimization algorithm with maximizing channel capacity under joint power constraints(sum-powers and maximum eigenvalue) based on the convex optimization theory. By mining the internal property of the eigenvalue-decomposition of the power matrix
an exact closed-form of eigenmode is given and a two-dimensional searching method for deriving the values of the eigenvalues is proposed. As the searching points in every dimension are less than the number of the transmit antennas launched by the system
the algorithm has lower computational complexity and higher computer efficiency. Finally
simulation results verify the efficiency of the proposed method.
Telatar E. Capacity of multi-antenna Gaussian channels[J]. European Transactions on Telecommunications, 1999, 10(6):585-595.
ZHANG R, LIANG Y Y, POOR H V. On Gaussian MIMO BC-MAC Duality with Multiple Transmit covariance constraints[J]. IEEE Transactions on Information Theory, 2012, 58(4):2064-2078.
LIOLIS K, BERTINELLI M, PANAGOPOULOS A, et al. MIMO over satellite:a review[J]. IEEE Communications surveys and Tutorials, 2011, 13(1):27-51.
SAMPATH H, STOICA P, PAULRAJ A. Generalized linear precoder and decoder design for MIMO channels using the weighted MMSE criterion[J]. IEEE Transactions on Communications, 2001, 49(12):2198-2206.
SCAGLIONE A, STOICA P, BARBAROSSA S, et al. Optimal designs for space-time linear precoders and decoders[J]. IEEE Transactions on Signal Processing, 2002, 50(5):1051-1064.
Palomar D P, CIOFFI J M, LAGUNAS M A. Joint Tx-Rx beamforming design for multicarrier MIMO channels:A unified framework for convex optimization[J]. IEEE Transactions on Signal Processing, 2003, 51(9):2381-2401.
KAVIANI S, KRZYMIEN W A. Robust joint precoder and equalizer design in MIMO communication systems[C]. Proceedings of the IEEE Wireless Communications and Networking Conference 2012. 1-4 April 2012, Shanghai, China, USA, Piscataway, 277-282.
FEITEN A, MATHAR F R, HANLY S. Eigenvalue-based optimum-power allocation for Gaussian vector channels[J]. IEEE Transactions on Information Theory, 2007, 53(6):2304-2309.
DAI J, YE Z. Optimal designs for linear MIMO transceivers using directional derivative[J]. IET Communications, 2009, 3(9):1452-1462.
DAI J S, ZHAO D A. Linear MIMO transceivers design with weighted MMSE criterion[J]. Chinese Journal of Electrics, 2011, 20(1):58-62.
0
浏览量
349
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构