浏览全部资源
扫码关注微信
江苏科技大学机械工程学院,江苏 镇江,212003
收稿日期:2015-05-28,
修回日期:2015-06-10,
纸质出版日期:2015-11-14
移动端阅览
齐继阳, 王凌云, 吴倩等. 自动切割机圆锯片刀具磨损检测算法[J]. 光学精密工程, 2015,23(10z): 613-621
QI Ji-yang, Wang Ling-yun, WU Qian etc. Measuring algorithm for tool wear of circular saw blade in automatic cutting machine[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 613-621
齐继阳, 王凌云, 吴倩等. 自动切割机圆锯片刀具磨损检测算法[J]. 光学精密工程, 2015,23(10z): 613-621 DOI: 10.3788/OPE.20152313.0614.
QI Ji-yang, Wang Ling-yun, WU Qian etc. Measuring algorithm for tool wear of circular saw blade in automatic cutting machine[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 613-621 DOI: 10.3788/OPE.20152313.0614.
为实现玻镁板自动切割机圆锯片磨损量在线检测
设计了基于计算机器视觉的圆锯片磨损检测算法。首先基于自适应阈值
运用8邻域灰度相似度筛选算法找出圆锯片的候选角点;针对候选角点
判断其是否为邻域内唯一角点或其角点响应函数值最大
剔除掉伪角点。然后
判断角点是否为曲线上极大值点来剔除齿根点
从而确定圆锯片刀尖点的整像素坐标。最后
利用三次曲面拟合法对刀尖点进行亚像素定位
使用最小二乘法求解刀尖点所在圆的半径值
通过相机标定关系得出圆锯片的实际磨损量。通过实验比较了用经典Harris算法
改进Harris算法和本文提出的算法检测圆锯片磨损量的结果。结果表明:在两种圆锯片磨损量检测中
本中提出算法的检测时间仅为经典Harris算法的29.9%和29.7%
为改进Harris算法的145.7%和126.5%;对两种圆锯片刀尖点检测时
改进Harris算法的正确率为100%
50%
经典Harris算法的正确率为71.4%
37.5%
本文提出算法的正确率为100%
100%。因此
本文提出的算法在圆锯片磨损检测中具有明显的优势
是一种有效的圆锯片磨损检测方法。
To measure the wear of circular saw blade of an automatic magnesium oxide board cutting machine on line
this paper designs a circular saw blade wear measuring algorithm based on machine vision. Firstly
the possible corners of circular saw blade are found using 8 neighborhood gray similarity sifting algorithm based on an adaptive threshold. Then
some pseudo corners which are not the only one or its corner response function values are not the largest among the neighborhoods are removed. The tip points of circular saw blade are determined among the corners according to whether their value is the maximum
and the sub-pixel coordinates of tip points of circular saw blade are calculated using cubic surface fitting. The radius of the circular saw blade is calculated with least square method. Then
through the known relationship between camera coordinate and world coordinate
the actually wear value of circular saw blade is obtained. At last
tool wears for two kinds of circular saw blades are calculated using the classical Harris algorithm
improved Harris algorithm and the proposed algorithm in the paper respectively. The results show that the detection time of the algorithm proposed is only 29.9% and 29.7% that of classic Harris algorithm respectively
and 145.7% and 126.5% of that of improved Harris algorithm respectively. The correct ratios of classic Harris algorithm are 100% and 50% respectively
and those for improved Harris algorithm are 71.4% and 37.5%
for proposed algorithm are 100% and 100% respectively. Therefore
the algorithm proposed in the paper is much better than other two algorithms and it is an effective and efficient method for measuring the tool wear.
蒋理科,祝益军,冯炎清,等. 难加工材料刀具磨损检测技术研究与应用[J]. 航空制造技术, 2010(22):59-63. JIANG L K, ZHU Y J, FENG Y Q,et al.. Research and appfication of tool wear detection technology[J].Aviation Manufacturing Technology,2010(22):59-63.(in Chinese)
欧阳八生,唐少农. CNC车削中刀具磨损实时监控的试验研究[J]. 仪器仪表学报,2004,25(4):127-129. QUYANG B SH, TANG SH N. Study of tool wear on-line monitoring in CNC turning[J]. Chinese Journal of Scientific Instrument, 2004,25(4):127-129.(in Chinese)
张锴锋,袁惠群,聂鹏. 基于广义分形维数的刀具磨损状态监测[J]. 振动与冲击,2014,33(1):162-164. ZHANG K F, YUAN H Q, NIE P. Tool wear condition monitoring based on generalized fractal dimensions[J].Journal of Vibration and Shock, 2014,33(1):162-164.(in Chinese)
ZHANG C, LIU X H, FANG J W,et al.. A new tool wear estimation method based on shape mapping in the milling process[J]. International Journal of Advanced Manufacturing Technology, 2011,53(1-4):121-130.
SHAHABI H H, RATNAM M M. Assessment of flank wear and nose radius wear from workpiece roughness profile in turning operation using machine vision[J]. International Journal of Advanced Manufacturing Technology, 2009,43(1-2):11-21.
于化东,张留新,许金凯,等. 微小车床刀具磨损检测方法[J]. 长春理工大学学报:自然科学版, 2014,37(2):1-5. YU H D,ZHANG L X,XU J K,et al.. Detection method for tool wear of small lathe[J].Journal of Changchun University of Science and Technology:Natural Science Edition,2014,37(2):1-5.(in Chinese)
秦国华,易鑫,李怡冉,等. 刀具磨损的自动检测及检测系统[J]. 光学 精密工程,2014,22(12):3332-3341. QIN G H,YI X,LI Y R, et al.. Automatic detection technology and system for tool wear[J]. Opt. Precision Eng., 2014,22(12):3332-3341.(in Chinese)
MOOK W K, SHAHABI H H,RATNAM M M.Measurement of nose radius wear in turning tools from a single 2D image using machine vision[J].The International Journal of Advanced Manufucturing Technology,2009,43(3-4):217-225.
赵玲,刘庆民,戴伟锋. 圆锯片几何参数的精密视觉测量[J].红外与激光工程,2010,39(6):1115-1119. ZHAO L, LIU Q M,DAI W F. Precision visual measurement on geometry parameters of circular saw blade[J]. Infrared and Laser Engineering,2010,39(6):1115-1119.(in Chinese)
MATS F, LUÍS C, BIRGER M. Wear of teeth of circular saw blades[J]. Wood Material Science and Engineering,2012,7(3):150-153.
张从鹏,魏学光. 基于Harris角点的矩形检测[J]. 光学 精密工程,2014,22(8):2260-2266. ZHANG C P,WEI X G. Rectangle detection based on Harris corner[J].Opt. Precision Eng., 2014,22(8):2260-2266.(in Chinese)
RYU J B, LEE C G, PARK H H. Formula for Harris corner detector[J]. Electronics Letters, 2011,47(3):180-181.
赵万金,龚声蓉,刘纯平,等. 一种自适应的Harris角点检测算法[J]. 计算机工程,2008,34(10):212-214. ZHAO W J, GONG SH R, LIU CH P, et al.. Adaptive Harris corner detection algorithm[J]. Computer Engineering, 2008,34(10):212-214.(in Chinese)
王崴,唐一平,任娟莉. 一种改进的Harris角点提取算法[J]. 光学 精密工程,2008,16(10):1995-2001. WANG W, TANG Y P, REN J L.An improved algorithm for Harris corner detection[J]. Opt. Precision Eng., 2008,16(10):1995-2001.(in Chinese)
夏嘉廷. 基于DM6437的轴类零件视觉测量系统应用研究与开发[D].杭州:浙江大学,2012. XIA J T. Application Research and Development on Vision Measuring System of Shaft Parts Based on DM6437[D]. Huangzhou:Zhejiang University,2012.(in Chinese)
何海清,黄声享. 改进的Harris亚像素角点快速定位[J]. 中国图象图形学报,2012,17(7):853-857. HE H Q, HUANG SH X. Improved algorithm for Harris rapid sub-pixel corners detection[J]. Journal of Image and Graphics, 2012,17(7):853-857.(in Chinese)
0
浏览量
193
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构