浏览全部资源
扫码关注微信
北京理工大学光电学院 北京,100081
收稿日期:2015-05-28,
修回日期:2015-06-12,
纸质出版日期:2015-11-14
移动端阅览
庄幽文, 高昆, 卢岩等. 基于几何不变量的形状上下文星图配准[J]. 光学精密工程, 2015,23(10z): 630-636
ZHUANG You-wen, GAO Kun, LU Yan etc. Star image matching by using geometric invariants[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 630-636
庄幽文, 高昆, 卢岩等. 基于几何不变量的形状上下文星图配准[J]. 光学精密工程, 2015,23(10z): 630-636 DOI: 10.3788/OPE.20152313.0631.
ZHUANG You-wen, GAO Kun, LU Yan etc. Star image matching by using geometric invariants[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 630-636 DOI: 10.3788/OPE.20152313.0631.
针对多画面天文星图的刚性配准
提出一种基于几何不变量的形状上下文配准算法。该算法首先对天文星图进行降噪预处理
并利用阈值分割与形态学算法提取天文星图中的星点及其质心坐标;然后利用星点质心间的几何不变量关系
对每个星点建立基于几何不变量的特征描述向量并由此构建了评价不同维数向量之间相似度的代价函数
以判断两个特征点之间特征描述向量的相似程度
从而得到两幅图像间的匹配星点对集合;最后
利用随机一致性鲁棒算法去除误匹配星点对
并计算得到空间变换配准参数。实验结果表明
该方法可对特征点数目、画面亮度等差异较大的两幅星图实现亚像素级精度的有效配准
性能及鲁棒性均好于传统配准方法。对于大小为46083072
曝光时间与ISO各不相同的两组实际拍摄图像
本文方法的配准精度在0.5 pixel左右
能够成功完成配准任务。
To match rigidly star images with multi-screens
a shape context based registration method by using geometric invariants was proposed. First
denoise methods
segmented method and morphology method were applied to star images to extract star points
so that centroid of star points could be calculated. Then
feature descriptors for every star point were calculated based on geometric invariants among all stars. Each descriptor was used to represent the relationship between this star and others. A price function to evaluate the similarity between star points was constructed to get a star match pair set between the two images. Finally
random sample consensus robust method was used to remove wrong star match pairs and calculate registration parameters for the space transform. Experimental results demonstrate that proposed method can successfully match the image with different number of feature points and different brightnesses in a sub-pixel level. For two group images with the size of 4608*3072 and different ISOs
the proposed method can offer the registration accuracy near 0.5 pixel
which meets the requirements of the registration.
翟优,曾峦,熊伟. 基于不变特征描述符实现星点匹配[J]. 光学 精密工程,2012,20(11):2531-2539. ZHAI Y, ZENG L, XIONG W. Star matching based on invariant feature descriptor[J]. Opt. Precision Eng., 2012,20(11):2531-2539.(in Chinese)
余先川,吕中华,胡丹. 遥感图像配准技术综述[J]. 光学 精密工程, 2013,21(11):2960-2972. YU X CH, LÜ ZH H, HU D. Review of remote sensing image registration techniques[J]. Opt. Precision Eng., 2013,21(11):2960-2972.(in Chinese)
易盟,郭宝龙,严春满. 结合优化梯度滤波与投影不变的航拍视频配准[J]. 光学 精密工程, 2012,20(3):651-660. YI M, GUO B L, YAN CH M. Aerial video registration combining optimal gradient filters and projective invariant[J]. Opt. Precision Eng., 2012, 20(3):651-660.(in Chinese)
PLUIM J P W, ANTOINE M J B, VIERGEVER M A. Mutual-information-based registration of medical images:A survey[J]. IEEE Transaction on Medical Image, 2003,22(8):986-1004.
李金屏,常晓丽,尹建芹. 最大对齐度算法在多模态图像配准中正负像无关性分析[J]. 高电压技术, 2011,37(2):417-421. LI J P, CHANG X L, YIN J Q. Independent of positive or negative image in multi modal image registration using alignment metric[J]. High Voltage Engineering, 2011,37(2):417-421.(in Chinese)
HEO Y, LEE K, LEE S. Robust stereo matching using adaptive normalized cross-correlation[J]. IEEE Trans. Pattern Anal. Mach. Intell.,2011,33(4):807-822.
MIKOLAJCZYK K, SCHMID C. Scale & affine invariant interest point detectors[J]. International Journal of Computer Vision, 2004,60(1):63-86.
LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004,60(2):91-110.
KE Y, SUKTHANKAR R. PCA-SIFT:A more distinctive representation for local image descriptors[C]. Proceedings of the Conference on Computer Vision and Pattern Recognition, Washington, USA:IEEE, 2004:511-517.
BAY H, TUYTELAARS T, van GOOL L. Surf:Speeded up robust features[C]. European Conference on Computer Vision, Austria:Computer Vision Laboratory, 2006:404-407.
MATAS J, CHUM O, URBAN M, et al..Robust wide-baseline stereo from maximally stable extremal regions[J]. Image and Vision Computing, 2004,22(10):761-767.
秦瑾,张新峰. 基于改进Shape-context的分层交通标志识别系统[J]. 计算机工程与设计, 2014,35(1):183-187. QIN J, ZHANG X F. Hierarchical traffic sign recognition system based on improved shape context[J]. Computer Engineering and Design, 2014,35(1):183-187.(in Chinese)
SONG ZH L, ZHOU SH G, GUAN J H. A novel image registration algorithm for remote sensing under affine transformation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014,52(8):4895-4912.
倪国强, 刘琼. 多源图像配准技术分析与展望[J]. 光电工程, 2004,31(9):1-6. NI G Q, LIU Q. Analysis and prospect of multi-source image registration techniques[J]. Opto-Electronic Engineering, 2004,31(9):1-6.(in Chinese)
JONKER R, VOLGENANT A. A shortest augmenting path algorithm for dense and sparse linear assignment probles[J]. Computing,1987, 38(1):325-340.
GONÇALVES H, GONCALVES J, CORTE-REAL L. Measures for an objective evaluation of the geometric correction process quality[J]. IEEE Geosci. Remote Sens. Lett., 2009,6(2):292-296.
0
浏览量
413
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构