浏览全部资源
扫码关注微信
1. 金陵科技学院网络与通信工程学院,江苏 南京,211169
2. 南京师范大学虚拟地理环境教育部重点实验室,江苏 南京,210023
3. 金陵科技学院江苏省智慧软件与云服务工程重点实验室, 江苏 南京 211169
收稿日期:2015-06-05,
修回日期:2015-06-21,
纸质出版日期:2015-11-14
移动端阅览
丁凯孟, 朱长青, 苏守宝等. 用于多光谱影像完整性认证的感知哈希算法[J]. 光学精密工程, 2015,23(10z): 676-683
DING Kai-meng, ZHU Chang-qing, SU Shou-bao etc. Perceptual hash algorithm for integrity authentication of multispectral remote sensing images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 676-683
丁凯孟, 朱长青, 苏守宝等. 用于多光谱影像完整性认证的感知哈希算法[J]. 光学精密工程, 2015,23(10z): 676-683 DOI: 10.3788/OPE.20152313.0677.
DING Kai-meng, ZHU Chang-qing, SU Shou-bao etc. Perceptual hash algorithm for integrity authentication of multispectral remote sensing images[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 676-683 DOI: 10.3788/OPE.20152313.0677.
提出一种综合多光谱影像各波段内容特征的感知哈希算法
以实现基于感知内容的多光谱影像完整性认证
并将认证的粒度精确到具体波段。首先
对多光谱影像进行预处理
根据各波段信息丰富程度的不同
选择不同的特征提取方式;然后
分别基于边缘提取算法和离散余弦变换(DCT)变换提取各波段内容特征;最后
对提取的特征进行压缩与归一化处理
得到多光谱影像的感知哈希序列。多光谱影像的认证过程则是通过比较待认证波段的感知哈希序列和原始感知哈希序列之间的差异来实现的。实验证明
该算法能够有效实现多光谱影像的完整性认证
并能够将篡改定位到具体的波段
克服了现有感知哈希算法没有顾及多光谱影像数据特征的缺陷
为多光谱影像的有效利用提供了保障。
A perceptual hashing algorithm for multispectral remote sensing images based on the synthetical characteristics of each band content was proposed to realize the authentication of multispectral images and to locate the tamper at the concrete band. Firstly
the multispectral remote sensing image was preprocessed and the feature extraction method for each band was determined by the information richness of the band. Then
the content feature of each band was extracted by edge extraction method and Discrete Cosine Transformation(DCT). Finally
the extracted feature was constructed based on the further compressed and normalized features
and the final perceptual hash value for the multispectral remote sensing image was obtained. The authentication was realized by comparing the difference between the recomputed perceptual hash value and the original hash value. The experiments indicate that the proposed algorithm can realize content integrity authentication for multispectral remote sensing images
and can locate the tamper at the concrete band of the image
which overcomes the defects of the existing perceptual hash algorithm without considering the feature of multispectral remote sensing images
and guarantees the effective utilization of multi-spectral images.
龚卫国,张旋,李正浩. 基于改进局部敏感散列算法的图像配准[J]. 光学 精密工程, 2011,19(6):1375-1383. GONG W G, ZHANG X, LI ZH H. Image registration based on extended LSH[J]. Opt. Precision Eng., 2011,19(6):1375-1383.(in Chinese)
牛夏牧,焦玉华. 感知哈希综述[J]. 电子学报, 2008,36(7):1405-1411. NIU X M, JIAO Y H. An overview of perceptual hashing[J]. Acta Electronica Sinica, 2008, 36(7):1405-1411.(in Chinese)
汤毅, 辛勤, 李纲, 等. 基于内容的高光谱图像无损压缩[J]. 光学 精密工程,2012,20(3):668-674. TANG Y,XIN Q,LI G,et al..Lossless compression of hyperspectral images based on contents[J].Opt. Precision Eng.,2012,20(3):668-674.(in Chinese)
VENKATESAN R, KOON S M, JAKUBOWSKI M H, et al.. Robust image hashing[C]. IEEE, 2000,3:664-666.
KAILASANATHAN C, NAINI R S. Image authentication surriving acceptable modifications using statistical measures and k-mean segmentation[C]. IEEE-Eurasip Workshop Nonlinear Signal and Image, Baltimore, Maryland, USA, 2001:1-13.
LU C S, LIAO H Y M. Structural digital signature for image authentication:an incidental distortion resistant scheme[J]. IEEE Transactions on Multimedia, 2003,5(2):161-173.
SWAMINATHAN A, MAO Y, WU M. Robust and secure image Hashing[J]. IEEE Transactions on Information Forensics and Security, 2006,1(2):215-230.
KOAZAT S S, VENKATESAN R, MIHCAK M K. Robust perceptual image Hashing via matrix invariants[C]. Proceedings of 2005 ICIP, Genova, Italy, 2005,3443-3446.
TANG ZH J, ZHANG X Q, DAI X, et al.. Robust image Hash function using local color features[J]. AEU-International Journal of Electronics and Communications, 2013,67(8):717-722.
SUN R, ZENG W J. Secure and robust image hashing via compressive sensing[J]. Multimedia Tools and Applications, 2014,70:1651-1665.
文振焜,高金花,朱映映,等. 融合时空域变化信息的视频感知哈希算法研究[J]. 电子学报,2014,42(6):1163-1167. WEN ZH K, GAO J H, ZHU Y Y, et al.. Video perceptual hashing fusing spatio temporal change detection[J]. Acta Electronica Sinica, 2014,42(6):1163-1167.(in Chinese)
丁凯孟, 朱长青. 一种用于遥感影像完整性认证的感知哈希算法[J]. 东南大学学报:自然科学版, 2014,44(4):723-727. DING K M, ZHU CH Q. Perceptual Hash algorithm for integrity authentication of remote sensing image[J]. Journal of Southeast University(Natural Science Edition), 2014,44(4):723-727.(in Chinese)
叶沅鑫,单杰,彭剑威, 等. 利用局部自相似的多光谱遥感图像自动配准[J]. 测绘学报, 2014,43(3):268-275. YE Y X, SHAN J, PENG J W, et al.. Automated multispectral remote sensing image registration using local self-similarity[J]. Acta Geodaetica et Cartographica Sinica, 2014,43(3):268-275.(in Chinese)
张维克,孔祥维,尤新刚. 安全鲁棒的图像感知哈希技术[J]. 东南大学学报:自然科学版, 2008, 37(1):188-192. ZHANG W K, KONG X W, YOU X G. Secure and robust image perceptual Hashing[J]. Journal of Southeast University(Natural Science Edition), 2008,37(1):188-192.(in Chinese)
FRIDRICH J, GOLJAN M. Robust hash functions for digital watermarking[C]. IEEE, 2000:178-183.
赵玉鑫,刘光杰,戴跃伟,等. 一种新的视觉Hash算法[J]. 光学 精密工程, 2008,16(3):551-557. ZHAO Y X, LIU G J, DAI Y W,et al..A novel perceptual image Hash algorithm[J]. Opt. Precision Eng., 2008,16(3):551-557.(in Chinese)
王俊文,刘光杰,张湛,等. 基于小波变换和Zernike矩的图像区域复制篡改鲁棒取证[J]. 光学 精密工程, 2009,17(7):1686-1693. WANG J W, LIU G J, ZHANG ZH,et al.. Robust forensics for image regional duplication and forgery based on DWT and Zernike moment[J]. Opt. Precision Eng., 2009,17(7):1686-1693.(in Chinese)
0
浏览量
484
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构