浏览全部资源
扫码关注微信
1. 四川大学水力学与山区河流开发保护国家重点实验室,四川 成都,610065
2. 四川大学水利水电学院, 四川 成都 610065
3. 成都理工大学国土资源部地学空间信息技术重点实验室, 四川 成都 610059
4. 西南交通大学地球科学与环境工程学院, 四川 成都 611756
收稿日期:2015-06-02,
修回日期:2015-06-30,
纸质出版日期:2015-11-14
移动端阅览
鲁恒, 李龙国, 付萧等. 无人机光学影像分区域加权平差拼接[J]. 光学精密工程, 2015,23(10z): 738-743
LU Heng, LI Long-guo, FU Xiao etc. Optical image stitching for UAV based on weighted adjustment and regional separation[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 738-743
鲁恒, 李龙国, 付萧等. 无人机光学影像分区域加权平差拼接[J]. 光学精密工程, 2015,23(10z): 738-743 DOI: 10.3788/OPE.20152313.0739.
LU Heng, LI Long-guo, FU Xiao etc. Optical image stitching for UAV based on weighted adjustment and regional separation[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 738-743 DOI: 10.3788/OPE.20152313.0739.
针对无人机影像数量多、畸变大
在影像拼接过程中会产生大量累积误差的问题
对如何减少拼接过程中的误差累积进行了研究。首先
根据记录影像匹配过程中心点位置计算大致的匹配区域以减少匹配时间。接着
进行区域网概算
列出误差方程
并对不同地形特征区域赋予权值进行分区域加权平差。最后
利用无人机影像分别对本文方法和传统的直接拼接法进行实验。实验结果表明:本文提出的方法可使鬼影和错位现象减少12%
拼接效率提高15%
拼接后获得的面积扩大了8%。结果显示本文方法能从误差控制和效率上较好地完成无人机影像拼接。
When the images from an Unmanned Aerial Vehicle(UAV) is stitched
it will produce a lot of accumulated errors because of the large image quantity and image distortion. Therefore
a method to efficiently reduce the accumulated error was researched. Firstly
a general matching area was calculated according to the record center position in the stitching process to reduce the matching time. Then error equation was listed to carry on the regional network
and different terrain feature areas were given to conduct the area weighted adjustment. Finally
UAV images were used to the experiment for proposed method in this paper and the traditional direct splicing method. The experimental results on the proposed method show that the ghost and dislocation phenomenon are decreased by 12%
stitching efficiency increased by 15%
and the area of the stitching after expanding has improved by 8%. It concludes that the method can stitch UAV image better in the error control and efficiency.
RANGO A, LALIBERTE A. Impact of flight regulations on effective use of unmanned aircraft systems for natural resources applications[J]. Journal of Applied Remote Sensing, 2010,4(1):043539.
ANDREA S, ALBERT R. Texture and scale in object-based analysis of subdecimeter resolution Unmanned Aerial Vehicle(UAV) imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009,47(3):761-769.
MA L, CHENG L, HAN W Q, et al.. Cultivated land information extraction from high-resolution unmanned aerial vehicle imagery data[J]. Journal of Applied Remote Sensing, 2014,8(1):083673.
王利民,刘佳,杨玲波,等. 基于无人机影像的农情遥感监测应用[J]. 农业工程学报,2013,29(18):136-145. WANG L M, LIU J, YAGN L B, et al.. Applications of unmanned aerial vehicle images on agricultural remote sensing monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013,29(18):136-145.
鲁恒,李永树,何敬,等. 一种基于特征点的无人机影像自动拼接方法[J]. 地理与地理信息科学,2010,26(5):16-19. LU H, LI Y SH, HE J, et al.. An automatic mosaic method in unmanned aerial vehicle images based on feature points[J].Geography and Geo-information Science,,2010,26(5):16-19.
Andrea S, Jeffrey E, Rango A, et al.. Acquisition, or Thorectification, and Object-based Classification of Unmanned Aerial Vehicle(UAV) Imagery for Rangeland Monitoring[J].Photogrammetric Engineering & Remote Sensing,2010,48(6):661-672.
ZHOU G Q. Near real time ortho rectification and mosaic of small UAV video flow for time critical event response[J].IEEE Transactions on Geoscience and Remote Sensing,2009,47(3):739-747.
LOWE D G. Distinctive image features from scale-invariant key points[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
YAN K,RAHUL S. PCA-SIFT:a more distinctive representation for local image descriptors[C].Computer Vision and Pattern Recognition,2004,20(2):560-513.
YUAN X X, ZHU W, WU J L, et al.. GPS-supported bundle block adjustment without ground control points[J]. Geomatics and Information Science of Wuhan University, 2004, 29(10):852-857.
YUAN X X, JI SH P, XIE CH. Bundle block adjustment based on imagery given orientation parameters[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11):955-959.
0
浏览量
378
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构