浏览全部资源
扫码关注微信
河北工业大学机器人及自动化研究所, 天津 300130
收稿日期:2015-06-02,
修回日期:2015-06-30,
纸质出版日期:2015-11-14
移动端阅览
易丹, 邵猛, 范京京等. 横向分区非均匀条纹生成算法[J]. 光学精密工程, 2015,23(10z): 768-775
YI Dan, SHAO Meng, FAN Jing-jing etc. Generation method of partitional horizontal uneven fringes[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 768-775
易丹, 邵猛, 范京京等. 横向分区非均匀条纹生成算法[J]. 光学精密工程, 2015,23(10z): 768-775 DOI: 10.3788/OPE.20152313.0769.
YI Dan, SHAO Meng, FAN Jing-jing etc. Generation method of partitional horizontal uneven fringes[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 768-775 DOI: 10.3788/OPE.20152313.0769.
由于三维测量系统中投影仪倾斜投影横向均匀条纹时会在参考平面上产生双向畸变非均匀条纹
故本文提出了一种横向分区非均匀条纹生成方法以降低投影横向条纹测量误差。这种方法使用分区函数描述非均匀条纹像素-相位之间的关系。投影横向分区非均匀条纹时
能够在参考平面上得到周期分布均匀的条纹
从而改善相位展开结果中像素-相位之间的非线性关系
提高测量精度。对高度为50 mm的平面进行的仿真实验表明
投影该种非均匀条纹测量误差均值为0.4099 mm
均匀条纹测量误差均值为2.5235 mm。对高度为50 mm的球体进行的仿真实验表明
投影均匀条纹的测量结果对称度误差为3.1%~9.3%
而投影分区非均匀条纹时
对称度误差为0.03%~1.6%。得到的结果显示
提出的横向分区非均匀正弦条纹能够明显提高投影横向正弦条纹的测量精度。
As the oblique angle projection of horizontal even fringes on a reference plane will generate uneven fringes with bidirectional distortion
this paper proposes a method to generate horizontal partitional uneven sine fringes to reduce the measuring errors of horizontal even fringes. With the proposed method
this kind of uneven fringes' pixel-phase relationship was described by partitional function. When this kinds of fringes were projected
the even fringes with uniform distribution could be obtained on the reference plane. So the nonlinear relation between the pixel and the phase could be improved in phase unwrapping results and the measuring accuracy would be optimized. A simulation experiment on a plane with a height of 50 mm shows that the mean value of uneven fringe projection measurement error is 0.4099 mm
and the mean value of even fringes is 2.5235 mm. Moreover
that for a globe with a height of 50 mm shows that the symmetry error ranges from 3.1% to 9.3% for projecting even fringes
whereas that ranges from 0.03% to 1.6% for projecting uneven fringes. The measurement accuracy has be increased by horizontal partitional uneven fringes projection.
叶海加, 陈罡, 邢渊. 双目CCD结构光三维测量系统中的立体匹配[J]. 光学 精密工程, 2004, 12(1):71-75. YE H J, CHEN G, XING Y.Stereo matching in 3D measurement system using double CCD structured light[J]. Opt. Precision Eng., 2004, 12(1):71-75.(in Chinese)
戴美玲, 杨福俊, 何小元. 基于双频彩色光栅投影测量不连续物体三维形貌[J]. 光学 精密工程, 2013, 21(1):7-12. DAI M L, YANG F J, HE X Y. Three-dimensional shape measurement of objects with discontinuities by dual-frequency color fringe projection[J]. Opt. Precision Eng., 2013, 21(1):7-12.(in Chinese)
许丽, 张之江. 结构光测量系统的误差传递分析[J]. 光学 精密工程, 2009, 17(2):306-313. XU L, ZHANG ZH J. Error propagation analysis of structured light system[J]. Opt. Precision Eng., 2009, 17(2):306-313.(in Chinese)
ZHANG Z, MA H, ZHANG S, et al.. Simple calibration of a phase-based 3D imaging system based on uneven fringe projection[J]. Optics Letters, 2011, 36(5):627-629.
ZHANG Z, TOWERS C E, TOWERS D P. Uneven fringe projection for efficient calibration in high-resolution 3D shape metrology[J]. Applied Optics, 2007, 46(24):6113-6119.
ZHANG Z. Review of single-shot 3D shape measurement by phase calculation-based fringe projection techniques[J]. Optics and Lasers in Engineering, 2012, 50(8):1097-1106.
郝煜栋, 赵洋, 李达成. 光栅投影式轮廓测量中两种误差的分析[J]. 光学学报, 2000, 20(3):376-379. HAO Y D, ZHAO Y, LI D CH. Analysis of two-error in grating projection profilometry[J]. Acta Optica Sinica, 2000, 20(3):376-379.(in Chinese)
FU Y, LUO Q. Fringe projection profilometry based on a novel phase shift method[J]. Optics Express, 2011, 22(19):21739-21747.
HUANG S, XIE L, WANG Z, et al.. Accurate projector calibration method by using an optical coaxial camera[J]. Applied Optics, 2015, 54(4):789-795.
李中伟, 史玉升, 钟凯, 等. 结构光测量技术中的投影仪标定算法[J]. 光学学报, 2009, 29(11):3061-3065. LI ZH W, SHI Y SH, ZHONG K, et al.. Projector calibration algorithm for the structured light measurement technique[J]. Applied Optics, 2009, 29(11):3061-3065.(in Chinese)
0
浏览量
450
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构