浏览全部资源
扫码关注微信
吉林大学通信工程学院, 吉林 长春 130022
收稿日期:2015-06-19,
修回日期:2015-07-07,
纸质出版日期:2015-11-14
移动端阅览
周求湛, 王聪香, 李亚强. 基于小波包和BP神经网络的周界入侵防御系统目标识别[J]. 光学精密工程, 2015,23(10z): 806-813
ZHOU Qiu-zhan, WANG Cong-xiang, LI Ya-qiang. Target recognition of perimeter intrusion defense system based on wavelet packet and BP neural network[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 806-813
周求湛, 王聪香, 李亚强. 基于小波包和BP神经网络的周界入侵防御系统目标识别[J]. 光学精密工程, 2015,23(10z): 806-813 DOI: 10.3788/OPE.20152313.0807.
ZHOU Qiu-zhan, WANG Cong-xiang, LI Ya-qiang. Target recognition of perimeter intrusion defense system based on wavelet packet and BP neural network[J]. Editorial Office of Optics and Precision Engineering, 2015,23(10z): 806-813 DOI: 10.3788/OPE.20152313.0807.
在周界入侵防御系统中地面目标产生的地震动信号较为微弱
因此在进行目标识别时需对目标信号进行特征提取。本文研究了基于小波包和BP神经网络的周界入侵防御系统目标识别方法。首先
使用小波去噪对前端探测器采集到的目标运动信号进行信号预处理
通过小波包分析将信号进行分解重构
对重构后的信号进行特征提取获得目标信号的特征向量。然后
将目标特征向量作为BP神经网络的输入
对各种类型的目标特征进行学习训练。最后
应用训练完成的网络对目标进行在线识别。提取地震检波器在6种距离下各5组共30组数据进行目标识别实验验证
结果显示
网络的实际输出向量和网络的期望输出向量是一致的
目标识别准确率达到99%左右。结果表明本方法可以有效识别周界入侵防御系统的各种目标。
The seismic signals generated by recognizing targets in a perimeter intrusion defense system based on a seismometer are very weak and difficult to be directly identified. So the signal features of the targets need to be extracted before target identification.This paper presents a new method of target recognition based on wavelet packet analysis and BP neural networks.Firstly
target motion signals captured by a front detector were proposed by using wavelet denoising. Then
the signals were decomposed and reconstructed with wavelet packet analysis
and the feature values of reconstructed signals were extracted to construct feature vectors. Furthermore
the feature vectors were used as the inputs of the BP neural networks to carry on learning and training various types of target characteristics.Finally
the trained neural network were used to identify the targets on-line. Recognition result for 30 groups of data from the seismometer(6 kinds of distance
5 sets) shows that the desired output vector of the network and the actual output vector of the network is consistent
and the target recognition accuracy reaches to 99%. It concludes that this method can effectively identify the target of perimeter intrusion defense systems.
宋丹平. 先进的机场周界防入侵报警系统[J]. 计算技术与信息发展, 2011(7):51-52. SONG D P, Advanced airport boundary intrusion alarm system[J]. Science & Technology Association Forum, 2011(7):51-52.(in Chinese)
LI H, LIU D H. Research on intelligent intrusion prevention system based on snort[C]. 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering CMCE 2010, Changchun:IEEE,2010,1:251-253.
杨兴国. 边防哨所重要路口无人值守自动监控系统的研究——基于DSP的小型便携式地震动目标探测识别系统[D]. 成都:成都理工大学,2007. YANG X G. Research of automatic supervising system of nobody on duty applying to important crossing of frontier sentry-The seismic target decting and identification micro-system based on DSP[D].Chengdu:Chengdu University of Science and Technology,2007.(in Chinese)
高奂文. 基于特征的目标提取与识别方法研究[D]. 沈阳:沈阳理工大学,2005. GAO H W. Method study of target extraction and recognition based on characteristics[D].Shenyang:Shenyang University of Science and Technology,2005.(in Chinese)
LI M, AN Y-Y, JIANG C-L, et al.. Ground moving target identification based on neural network[J]. Proceedings-2011 International Conference on Internet Computing and Information Service,ICICIS,2011,18:439-442.
陈逊,刘淑聪,郭纯生. 一种基于小波分析的地震信号特征提取方法[J]. 煤炭技术,2013,32(11):143-144. CHEN X,LIU SH C,GUO CH SH,A method based on wavelet analysis seismic signal feature vector extraction method[J]. Coal Technology,2013,32(11):143-144.(in Chinese)
肖文定,张文栋,熊继军. 基于小波变换的被动声目标识别的研究[J]. 弹箭与制导学报, 2005,25(1):227-229. XIAO W D, ZHANG W D, XIONG J J,The study of acoustic passive target recognition based on wavelet transform[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2005,25(1):227-229.(in Chinese)
宋敏. 基于神经网络的目标识别技术研究[M]. 南京:南京理工大学,2005. SONG M. Technology Research of Target Recognition Based on Neural Network[M]. Nanjing:Nanjing University of Science and Technology,2005.(in Chinese)
聂伟荣. 多传感器探测与控制网络技术[D]. 南京:南京理工大学,2001. NIE W R. Detecting and controlling network technology with multisensor system[D].Nanjing:Nanjing University of Science and Technology,2001.(in Chinese)
陶小亮. 基于地震动的目标识别和人员定位算法的研究与实现[D]. 南京:南京理工大学,2007. TAO X L. Research and implementation of target recognition based on ground motion and personnel positioning algorithm[D].Nanjing:Nanjing University of Science and Technology,2007.(in Chinese)
秦国华,谢文斌,王华敏. 基于神经网络与遗传算法的刀具磨损检测与控制[J]. 光学 精密工程, 2015,23(5):1314-1321. QIN G H,XIE W B,WANG H M.Detection and control for tool wear based on neural network and genetic algorithm[J].Opt.Precision Eng., 2015,23(5):1314-1321.(in Chinese)
0
浏览量
514
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构