浏览全部资源
扫码关注微信
1. 北京理工大学 光电学院 北京,100081
2. 中国北方车辆研究所 北京,100081
收稿日期:2015-09-28,
修回日期:2015-11-03,
纸质出版日期:2016-01-25
移动端阅览
常军, 沈本兰, 王希等. 宽谱段、动态局部高分辨离轴主动反射变焦系统[J]. 光学精密工程, 2016,24(1): 7-13
CHANG Jun, SHEN Ben-lan, WANG Xi etc. Off-axis reflective active zoom system with broad spectrum and dynamic local high-resolution[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 7-13
常军, 沈本兰, 王希等. 宽谱段、动态局部高分辨离轴主动反射变焦系统[J]. 光学精密工程, 2016,24(1): 7-13 DOI: 10.3788/OPE.20162401.0007.
CHANG Jun, SHEN Ben-lan, WANG Xi etc. Off-axis reflective active zoom system with broad spectrum and dynamic local high-resolution[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 7-13 DOI: 10.3788/OPE.20162401.0007.
为了实现无遮拦、宽谱段、动态的局部高分辨成像
设计了一种局部高分辨率的离轴主动反射变焦系统。该系统将离轴主动反射式变焦理论和局部动态高分辨率成像理论相结合
实现了宽谱段范围内不同焦距处的动态局部高分辨成像。采用曲率半径可变的变形镜实现变焦
避免了传统机械变焦中复杂的机械运动控制
减轻了系统体积和重量并有效地保证了系统的宽谱段和大视场;通过对变形镜面形的控制
在不同焦距处实现了全视场内任意感兴趣区域的局部高分辨成像
降低了数据传输量;而采用无色差的反射式系统则克服了传统透射式及折反射式系统只能实现单色局部高分辨成像的缺点。经过优化设计
系统在可见光范围内成像
焦距
f'
为75 mm(视场角FOV为
x
:0°~0.5°
y
:3°~10°)~150 mm(FOV为
x
:0°~0.5°
y
:1.7°~5°)
F
/#为7~14。理论和仿真分析表明
系统在各焦距处感兴趣区域内的成像质量均可达到衍射极限
实现了全视场内任意区域动态局部高分辨的成像效果。
To realize a broad spectrum and dynamic local high-resolution imaging
an off-axis reflective active zoom system is designed. This system combines off-axis reflective active zoom theory and local high-resolution theory together and realizes dynamic variable resolution in different focal lengths. Deformable mirrors(DMs) with variable curvature radii are used to change focal length to avoid complicated mechanical zoom movement control in a traditional system to reduce the volume and weight and to guarantee the broad spectrum of optical system. Through the control of deformable mirrors at different focal lengths
high-resolution within the Region of Interest(ROI) is achieved and the amount of data transmission is reduced. Moreover
as reflective systems have no chromatic aberration
it overcomes the disadvantages of monochrome imaging of traditional local high-resolution systems. After optimization
the imaging spectrum is visible light
the focal length ranges from 75 mm(Field of View(FOV)
x
:0°-0.5°
y
:3°-10°)-150 mm(FOV
x
:0°-0.5°
y
:1.7°-5°)
the
F
/# is 7-14. The result of theoretical and simulation analysis indicates that the imaging quality of the ROI reaches the diffraction limit
and the system realizes dynamic local high-resolution in the FOV.
庞志海, 樊学武, 邹刚毅,等. 新型大视场无遮拦三反光学系统设计[J]. 红外与激光工程, 2013, 42(9): 2449-2452. PANG ZH H, FAN X W, ZOU G Y,et al.. Design of new wide-angle unobscured three-mirror optical system[J]. Infrared and Laser Engineering, 2013, 42(9): 2449-2452.(in Chinese)
WICK D, MARTINEZ T. Adaptive optical zoom[J]. Optical Engineering, 2004, 43(1): 8-9.
骆守俊,夏寅辉,杨宁宁,等. 扫描型长波红外连续变焦光学系统[J]. 中国光学, 2015, 8(1): 107-113. LUO SH J, XIA Y H, YANG N N, et al.. Long-wavelength infrared continuous zoom scanning optical system[J]. Chinese Optics, 2015, 8(1): 107-113.(in Chinese)
王红,田铁印. 5倍变焦距光学系统小型化设计[J]. 中国光学, 2014, 7(2):315-319. WANG H, TIAN T Y. Miniature design of 5× zoom optical system[J]. Chinese Optics, 2014, 7(2): 315-319.(in Chinese)
苗健宇,张立平,翟岩,等. 小型连续变焦相机的结构实现[J]. 中国光学, 2014, 7(1): 169-174. MIAO J Y, ZHANG L P, ZHAI Y, et al.. Structural realization of small zoom system[J]. Chinese Optics, 2014, 7(1): 169-174.(in Chinese)
SEIDL K, JKNOBBE J, GRUGER H. Design of an all-reflective unobscured optical-power zoom objective[J]. Applied Optics, 2009, 48(21): 4097-4107.
ZHAO H, FAN X W, ZOU G Y, et al.. All-reflective optical bifocal zooming system without moving elements based on deformable mirror for space camera application[J]. Applied Optics, 2013, 52(6): 1192-1210.
沈本兰, 常军, 王希,等. 三反射主动变焦系统设计[J]. 物理学报, 2014, 63(14): 140-146. SHEN B L, CHANG J, WANG X, et al.. Design of the active zoom system with three-mirror[J]. Acta Physica Sinica, 2014, 63(14): 140-146.(in Chinese)
赵文才. 改进的离轴三反光学系统设计[J]. 光学精密工程, 2011, 19(12): 2837-2843. ZHAO W C. Design of improved off-axial TMA optical system[J]. Opt. Precision Eng., 2011, 19(12): 2837-2843.(in Chinese)
程洪涛. 基于变形镜的三反射离轴变焦物镜设计[J]. 光学学报,2013, 33(12): 1222002. CHENG H T. Design of three-mirror non-coaxial zoom objective based on deformable mirror[J]. Acta Optica Sinica, 2013, 33(12): 1222002.(in Chinese)
薛栋林,郑立功,张峰. 基于光学自由曲面的离轴三反光学系统[J]. 光学精密工程, 2011,19(12): 2814-2820. XUE D L, ZHENG L G, ZHANG F. Off-axis three mirror system based on freeform mirror[J]. Opt. Precision Eng., 2011, 19(12): 2814-2820.(in Chinese)
常军,翁志成,姜会林,等. 长焦距空间三反光学系统设计[J]. 光学精密工程, 2001,9(4): 315-318. CHANG J, WENG ZH CH, JIANG H L, et al.. Design of long focal length space optical system with three reflective mirrors[J]. Opt. Precision Eng., 2001,9(4): 315-318.(in Chinese)
WICK D, MARTINEZ T, RESTAINO S, et al.. Foveated imaging demonstration[J]. Optics Express, 2002, 10(1): 60-65.
XIE Y J, ZHU SH L, HU SH L, et al.. Space-based telescope with variable resolution at any field angle by active optical zoom[J]. Acta Photonica Sinica, 2011, 40(11): 1619-1624.
周晓斌,栾亚东,焦明印,等. 基于Zernike模式法的变形反射镜补偿面型求解方法[J]. 红外技术, 2014, 36(10): 782-786. ZHOU X B, LUAN Y D, JIAO M Y, et al.. Solving method of the deformable mirror compensation surface based on the Zernike method[J]. Infrared Technology, 2014, 36(10): 782-786.(in Chinese)
0
浏览量
468
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构