浏览全部资源
扫码关注微信
1. 山东大学 机械工程学院 先进射流工程技术研究中心, 山东 济南 250061
2. 高效洁净机械制造教育部重点实验室, 山东 济南 250061
收稿日期:2015-05-15,
修回日期:2015-06-20,
纸质出版日期:2016-01-25
移动端阅览
王伟, 姚鹏, 王军等. 石英玻璃的热辅助高效塑性域干磨削[J]. 光学精密工程, 2016,24(1): 83-93
WANG Wei, YAO Peng, WANG Jun etc. Heat-assisted high efficiency ductile dry grinding of fused silica[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 83-93
王伟, 姚鹏, 王军等. 石英玻璃的热辅助高效塑性域干磨削[J]. 光学精密工程, 2016,24(1): 83-93 DOI: 10.3788/OPE.20162401.0083.
WANG Wei, YAO Peng, WANG Jun etc. Heat-assisted high efficiency ductile dry grinding of fused silica[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 83-93 DOI: 10.3788/OPE.20162401.0083.
为了提高大口径石英玻璃光学元件的加工效率
提出了热辅助塑性域超精密磨削石英玻璃的新方法。分析了石英玻璃的热辅助塑性域磨削机理
通过理论推导得出磨削深度对磨削区表面最高温升的影响规律。采用陶瓷结合剂立方氮化硼(CBN)砂轮对石英玻璃进行干磨削
利用磨削热改善磨削区石英玻璃的力学性能
实现了石英玻璃的高效塑性域磨削。通过磨削实验研究了不同磨削深度对石英玻璃表面粗糙度(
R
a
)和亚表面损伤深度的影响。实验结果表明
随着磨削深度的增加
R
a
和亚表面损伤深度反而降低。当磨削深度为5 m
大于粗磨表面的裂纹深度时
获得了
R
a
值为0.07 m的光滑无裂纹的塑性域磨削表面。通过扫描电镜观察研究了砂轮的磨损机理
结果显示陶瓷结合剂CBN砂轮塑性域干磨削石英玻璃时
砂轮以磨耗磨损为主
该结果为研究新型的陶瓷结合剂CBN砂轮提供了依据。
To improve the machining efficiency of fused silica optical elements with large diameters
this paper presents a method for heat-assisted ductile ultra-precision grinding of the fused silica. The mechanism of heat-assisted ductile grinding for the fused silica was analyzed
and the effect of different grinding depths on the highest temperature rise on the surface of the grinding zone was investigated by theoretical inference. The fused silica was ground in dry method by a high temperature resistant ceramic bond Cubic Boron Nitride(CBN) wheel and the high efficiency ductile grinding of fused silica was realized by using grinding heat to improve the mechanical properties of fused silica in the grinding zone. Through the grinding experiment
the effect of different grinding depths on the surface roughness(
R
a
) and sub-surface damage depth of fused silica was investigated. The experiment results show that the
R
a
and sub-surface damage depth are reduced with the increase of grinding depth. When the grinding depth is greater than the crack depth(5 m) by coarse grinding
smooth and no crack surface of ductile grinding with the
R
a
0.07 m can be achieved. The mechanism of wheel wear was studied by a scanning electron microscope. The results show that the wear mechanism of ceramic bond CBN wheel ductile grinding of the fused silica is grain flatted
which provides the basis for researching a new type of ceramic bond CBN grinding wheel for dry grinding of the fused silica.
郭晓光, 翟昌恒, 张亮,等. 光学石英玻璃纳米级加工性能[J]. 光学精密工程, 2014, 22(11):2959-2966. GUO X G, ZHAI C H, ZHANG L,et al.. Nano-processing performance of optical glass [J].Opt. Precision Eng., 2014, 22(11): 2959-2966. (in Chinese)
周林, 戴一帆, 解旭辉,等. 光学镜面离子束加工的可达性[J]. 光学精密工程, 2007, 15(2):160-166. ZHOU L, DAI Y F, XIE X H,et al.. Material removal property in ion figuring process for optical component [J]. Opt. Precision Eng., 2007, 15(2): 160-166. (in Chinese )
张峰, 张斌智. 磁流体辅助抛光工件表面粗糙度研究[J]. 光学精密工程, 2005, 13(1):34-39. ZHANG F, ZHANG B ZH. Nano-processing performance of optical glass [J].Opt. Precision Eng., 2014, 22(11): 2959-2966. (in Chinese)
YAO P, YOSHIHARA N, HITOMI N,et al.. Ductile and brittle mode grinding of fused silica[J]. Key Engineering Materials, 2010, 447-448:21-25.
GROSS T M, TOMOZAWA M. Crack-free high load Vickers indentation of silica glass[J].Journal of Non-Crystalline Solids, 2008, 354(354):5567-5569.
BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-regime grinding: a new technology for machining brittle materials[J].Journal of Engineering for Industry, 1991, 113(2):184-189.
ZHAO Q, LIANG Y, STEPHENSON D,et al.. Surface and subsurface integrity in diamond grinding of optical glasses on Tetraform'C'[J]. International Journal of Machine Tools & Manufacture, 2007, 47(14):2091-2097.
赵清亮, 赵玲玲, 王宇,等. 电镀金刚石砂轮高效精密修整及熔融石英磨削试验研究[J]. 机械工程学报, 2013, 49(23):174-181. ZHAO Q L, ZHAO L L, WANG Y, et al.. High efficient precision conditioning of the electroplated diamond wheel and grinding of fused silica glasses [J]. Chinese Journal of Mechanical Engineering, 2013, 49(23): 174-181. (in Chinese)
仇中军, 伊萍, 卢翠,等. 石英玻璃表面改性后的力学特性分析[J]. 材料科学与工程学报, 2013, 26(5): 982-987. QIU ZH J, YI P, LU C,et al.. Mechanical property analysis of modified auartz glass[J]. Journal of Materials Science & Engineering, 2013, 26(5): 982-987.(in Chinese)
DAVID B M, BRIAN R L, ROBERT F C. Microstructural effects on grinding of alumina and glass-ceramics [J]. Journal of the American Ceramic Society, 2005, 70(6):C-139-C-140.
MICHEL M D, SERBENA F C, LEPIENSKI C M. Effect of temperature on hardness and indentation cracking of fused silica [J]. Journal of Non-Crystalline Solids, 2006, 352(s 32-35):3550-3555.
贝季瑶. 磨削温度的分析与研究[J]. 上海交通大学学报, 1964, 9: 55-71. BEI J Y. Analysis and investigation of the grinding temperature [J].Journal of Shanghai Jiaotong University, 1964, 9: 55-71.(in Chinese)
LI L, FU J, PEKLENIK J. A study of grinding force mathematical model [J].CIRP Annals - Manufacturing Technology, 1980, 29(1):245-249.
谢桂芝, 尚振涛, 盛晓敏,等. 工程陶瓷高速深磨磨削力模型的研究[J]. 机械工程学报, 2011, 47(11):169-176. XIE G ZH, SHANG ZH T, SHENG X M, et al.. Grinding force modeling for high-speed deep grinding of engineering ceramics [J]. Chinese Journal of Mechanical Engineering, 2011, 47(11): 169-176. (In Chinese)
任敬心, 华安定,等. 磨削原理[M]. 第1版, 西安: 西北工业大学出版社, 1988: 39. REN J X, HUA A D, et al.. Grinding Theory [M]. Version 2, Xian: Northwestern Polytechnic University Press, 1988: 39. (in Chinese)
GUO C, MALKIN S. Analysis of transient temperatures in grinding [J].Journal of Engineering for Industry, 1995, 117(4):571-577.
ROWE W B, PETTIT J A, BOYLE A,et al.. Avoidance of Thermal Damage in Grinding and Prediction of the Damage Threshold [J]. CIRP Annals - Manufacturing Technology, 1988, 37(1):327-330.
张旺玺,卢金斌. 立方氮化硼材料的制备、性能及应用[J]. 中原工学院学报, 2011, 22(2): 25-28. ZHANG W X, LU J B. Review on synthesis, properties and application of CBN based materials [J].Journal of Zhongyuan University of Technology, 2011, 22(2): 25-28.(in Chinese)
0
浏览量
508
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构