浏览全部资源
扫码关注微信
南京航空航天大学 机械结构力学及控制国家重点实验室,江苏 南京,210016
收稿日期:2015-06-10,
修回日期:2015-07-27,
纸质出版日期:2016-01-25
移动端阅览
卢倩, 黄卫清, 孙梦馨. 基于柔度比优化设计杠杆式柔性铰链放大机构[J]. 光学精密工程, 2016,24(1): 102-111
LU Qian, HUANG Wei-qing, SUN Meng-xin. Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 102-111
卢倩, 黄卫清, 孙梦馨. 基于柔度比优化设计杠杆式柔性铰链放大机构[J]. 光学精密工程, 2016,24(1): 102-111 DOI: 10.3788/OPE.20162401.0102.
LU Qian, HUANG Wei-qing, SUN Meng-xin. Optimization design of amplification mechanism for level flexure hinge based on compliance ratio[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 102-111 DOI: 10.3788/OPE.20162401.0102.
分析与研究了柔性铰链的柔度特性
用于柔性放大机构的优化设计。提出了一个通用的柔度比参数
探讨了具有不同柔度比
的柔性铰链主要输出位移形式的灵敏度
分析了它对常用柔性铰链的柔度特性的影响规律。然后
以柔性铰链的柔度比
为基本参数
在考虑柔性铰链转动中心偏移量的基础上
推导了二级杠杆式柔性铰链放大机构放大率的理论计算方法
并依据柔性铰链的柔度比特性提出了柔性放大机构的优化设计方法。开展了有限元仿真和实验研究。结果显示
优化后的柔性放大机构的放大率比优化前的放大率分别提高了0.234和0.23。实验表明
依据柔性铰链的柔度比
对柔性放大机构进行优化设计能够有效地提高柔性放大机构的位移放大率与工作行程
进而提高放大机构的末端运动及定位精度。
The compliance features of flexure hinges were analyzed to design and optimize the flexible amplification mechanisms. A new general structural parameter called compliance ratio was proposed. The sensitivities of main type of output displacement of the flexure hinges with different compliance ratios
were analyzed
and the effect laws of compliance features on the commonly used flexure hinges were also discussed in detail. Then
by taking the compliance ratio
as the basic parameter
the theoretical calculation method of the amplification ratio of a two-stage lever-type flexure hinge mechanism was proposed in considering the offset of the flexure hinge's rotation. The optimization design of the flexible amplification mechanism was studied on the basis of the characteristics of the compliance ratio
. The finite element simulation and the experiment were performed. The results show that the amplification ratio of the optimized flexible amplification mechanism is larger than that of the flexible mechanism before optimization
and the increases of the simulation and the experiment are 0.234 and 0.23
respectively. These results demonstrate that to optimize the flexible amplification mechanism based on the compliance ratio
of flexure hinges improves the amplification ratio and the working range significantly
and enhances the accuracy of movement and positioning of the amplification mechanism.
XU Q S. Design, testing and precision control of a novel long-stroke flexure micro-positioning system [J]. Mechanism and Machine Theory, 2013, 70(6): 209-224.
李庆祥, 王东升, 李玉和. 现代精密仪器设计(第二版)[M]. 北京: 清华大学出版社, 2004. LI Q X, WANG D SH, LI Y H. Design of Modern Precision Instruments [M]. Beijing: Tsinghua University Press, 2004.(in Chinese)
左行勇, 刘晓明. 三种形状柔性铰链转动刚度的计算与分析[J]. 仪器仪表学报, 2006, 27(12): 1725-1728. ZUO X Y, LIU X M. Calculation and analysis of rotational stiffness for three types of flexure hinges [J]. Chinese Journal of Scientific Instrument, 2006, 27(12): 1725-1728.(in Chinese)
TIAN Y, SHIRINZADEH B, ZHANG D, et al.. Three flexure hinges for compliant mechanism designs based on dimensionless graph analysis [J]. Precision Engineering, 2010, 34(1): 92-100.
ZELENIKA S, MUNTEANU M G, DE BONA F. Optimized flexural hinge shapes for microsystems and high-precision applications [J]. Mechanism and Machine Theory, 2009, 44(10): 1826-1839.
SMITH T S, BADAMI V G, DALE J S, et al.. Elliptical flexure hinges[J]. Review of Scientific Instruments, 1997, 68(3): 1474-1483.
陈贵敏, 韩琪. 深切口椭圆柔性铰链[J]. 光学精密工程, 2009, 17(3): 570-575. CHEN G M. HAN Q. Deep-notch elliptical flexure hinges [J]. Opt. Precision Eng., 2009, 17(3): 570-575.(in Chinese)
陈贵敏, 刘小院, 贾建援. 椭圆柔性铰链的柔度计算[J]. 机械工程学报, 2006, 42(Z): 111-114. CHEN G M, LIU X Y, JIA J Y. Compliance calculation of elliptical flexure hinge [J]. Chinese Journal of Mechanical Engineering, 2006, 42(Z): 111-114.(in Chinese)
赵磊, 巩岩, 华洋洋. 直梁圆角形柔性铰链的柔度矩阵分析[J]. 中国机械工程, 2013, 24(18): 2462-2468. ZHAO L, GONG Y, HUA Y Y. Compliance matrix analysis of corner-filleted flexure hinge [J]. China Mechanical Engineering, 2013, 24(18): 2462-2468.(in Chinese)
卢倩, 黄卫清, 王寅, 等. 深切口椭圆柔性铰链优化设计[J]. 光学精密工程, 2015, 23(1): 206-215. LU Q, HUANG W Q, WANG Y, et al.. Optimization design of deep-notch elliptical flexure hinges [J]. Opt. Precision Eng., 2015, 23(1): 206-215.(in Chinese)
杨志刚, 刘登云, 吴丽萍, 等. 应用于压电叠堆泵的微位移放大机构[J]. 光学精密工程, 2007, 15(6): 884-888. YANG ZH G, LIU D Y, WU L, et al.. Micro-displacement magnifying mechanism used in piezo-stack pump [J]. Opt. Precision Eng., 2007, 15(6): 884-888.(in Chinese)
BI S S, ZHAO S S, ZHAO X F. Dimensionless design graphs for three types of annulus-shaped flexure hinges [J]. Precision Engineering, 2010, 34(3): 659-666.
LOBONTIU N. Compliance-based matrix method for modeling the quasi-static response of planar serial flexure-hinge mechanisms [J]. Precision Engineering, 2014, 38(3): 639-650.
王姝歆, 陈国平, 周建华, 等. 复合型柔性铰链机构特性及其应用研究[J]. 光学精密工程, 2005, 13(S1):91-97. WANG SH X, CHEN G P, ZHOU J H, et al.. Compliant mechanisms consisted of compound flexible hinges and its applications [J]. Opt. Precision Eng., 2005, 13(S1):91-97.(in Chinese)
宫金良, 胡光学, 张彦斐. 以刚度为目标的微位移放大模块闭环设计方法[J]. 机械工程学报, 2012, 48(15): 58-64. GONG J L, HU G X, ZHANG Y P. Closed loop design method of micro-driving displacement amplifier module targeting for stiffness [J]. Journal of Mechanical Engineering, 2012, 48(15): 58-64.(in Chinese)
沈剑英, 张海军, 赵云. 压电陶瓷驱动器杠杆式柔性铰链机构放大率计算方法[J]. 农业机械学报, 2013, 44(9): 267-271. SHEN J Y, ZHANG H J, ZHAO Y. Calculation method of magnification ratio for lever-type flexure hinge mechanism driven by piezoactuator[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 267-271.(in Chinese)
李威, 叶果, 王禹桥, 等. 一种桥式微位移放大机构的性能研究[J]. 中国矿业大学学报, 2011, 40(2): 310-314. LI W, YE G, WANG Y Q. Study of properties of a kind of bridge-type micro-displacement mechanism [J]. Journal of China University of Mining & Technology, 2011, 40(2): 310-314.(in Chinese)
BOLZMACHER C, BAUER K, SCHMID U, et al.. Displacement amplification of piezoelectric microactuators with a micromachined leverage unit [J]. Sensors and Actuators A: Physical, 2010, 157(1): 61-67.
KIM J J, CHOI Y M, AHN D, et al.. A millimeter-range flexure-based nano-positioning stage using a self-guided displacement amplification mechanism [J]. Mechanism and Machine Theory, 2012, 50(2): 109-120.
XU Q S, LI Y M. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier [J]. Mechanism and Machine Theory, 2011, 46(2): 183-200.
CHOI K B, LEE J J, HATA S. A piezo-driven compliant stage with double mechanical amplification mechanisms arranged in parallel [J]. Sensors and Actuators A: Physical, 2010, 161(1-2): 173-181.
赵磊, 巩岩, 赵阳. 光刻投影物镜中的透镜X-Y柔性微动调整机构[J]. 光学精密工程, 2013, 21(6): 1425-1433. ZHAO L, GONG Y, ZHAO Y. Flexure-based X-Y micro-motion mechanism used in lithographic lens [J]. Opt. Precision Eng., 2013, 21(6): 1425-1433.(in Chinese)
0
浏览量
1021
下载量
18
CSCD
关联资源
相关文章
相关作者
相关机构