浏览全部资源
扫码关注微信
1. 江南大学 机械工程学院, 江苏 无锡 214122
2. 上海交通大学 机械系统与振动国家重点实验室 上海,200240
3. 上海交通大学 系统控制与信息处理教育部重点实验室 上海,200240
4. 哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨,150080
收稿日期:2015-06-20,
修回日期:2015-07-25,
纸质出版日期:2016-01-25
移动端阅览
曹毅, 刘凯, 单春成等. 抗拉柔性铰链的理论建模及有限元分析[J]. 光学精密工程, 2016,24(1): 119-125
CAO Yi, LIU Kai, SHAN Chun-cheng etc. Theory modeling and finite element analysis of tensile flexure hinge[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 119-125
曹毅, 刘凯, 单春成等. 抗拉柔性铰链的理论建模及有限元分析[J]. 光学精密工程, 2016,24(1): 119-125 DOI: 10.3788/OPE.20162401.0119.
CAO Yi, LIU Kai, SHAN Chun-cheng etc. Theory modeling and finite element analysis of tensile flexure hinge[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 119-125 DOI: 10.3788/OPE.20162401.0119.
为了在保持转动刚度变化不大的情况下
使得LET (Lamina Emergent Torsion)柔性铰链能够适用于存在轴向载荷的场合
即拥有较大的轴向刚度
本文对LET的结构进行了适当改进
设计了一种新型柔性铰链--抗拉LET柔性铰链。基于抗拉LEMs (Lamina Emergent Mechanisms)柔性铰链结构
将整个抗拉LET柔性铰链等效为弹簧刚度模型
并对该弹簧刚度模型进行理论建模
得到封闭解。之后采用ANSYS软件
建立其有限元模型
分析其在转动载荷和轴向载荷两种不同场合下的形变
并同之前的理论模型进行比较。结果表明
采用弹簧刚度模型得到的等效刚度解与仿真分析结果较为一致
抗拉LET柔性铰链的弯曲刚度仅是传统LET柔性铰链的1.12倍
而拉伸刚度却是它的76.43倍。在弯曲刚度没有大幅变化情况下
抗拉LET柔性铰链的抗拉刚度明显增大
抗拉能力大大提高
表明抗拉LET柔性铰链的结构设计符合预期要求。
To increase the axial stiffness of a Lamina Emergent Torsion( LET) under the condition of invariable rotational stiffness
a new tensile flexure hinge was designed by improving traditional LET structures. Base on the structure of Lamina Emergent Mechanisms(LEMs)
the whole LET structure was equal to a spring stiffness model. By modeling the spring stiffness model in theory
the closed-form solution was obtained. Then
a Finite Element Analysis ( FEA) model was set up by the ANSYS to analyze the deformations under the rotating load and axial load and to compare with the previous theoretical model. Results show that the equivalent stiffness solution based on spring stiffness model is consistent with that of the simulation analysis
in which the bending tensile stiffness of the tensile LET is only 1.2 times that of the LET
but tensile stiffness is 76.43 times that of the LET. It indicates that the bending stiffness does not increase obviously
but the tensile stiffness of the tensile LET has significantly increased effectively and the tensile capacity of the LET is improved greatly. The design of the tensile LET meets expectation.
JACOBSEN J O, WINDER B G, HOWELL L L. Lamina emergent mechanisms and their basic elements [J]. Journal of Mechanisms and Robotics, 2010, 2(1): 1-9.
WILDING S E, HOWELL L L, MAGLEBY S P. Spherical lamina emergent mechanisms [J]. Mechanism and Machine Theory, 2012, 49: 187-197.
GOLLNICK P S, MAGLEBY S P, HOWELL L L. An introduction to multilayer lamina emergent mechanisms [J]. Journal of Mechanical Design, 2011, 133(8): 081006-1.
PARISE J J, HOWELL L L, MAGLEBY S P. Ortho-Planar linear-motion spring [J]. Mechanism and Machine Theory. 2001, 36(12): 1281-1299.
楚红岩. 多层LEMs机构设计与分析[D]. 北京:北京科技大学,2012. CHU H Y. Design and Analysis of Multi-layered Lamina Emergent Mechanisms [D]. Beijing: University of Science & Technology Beijing, 2012.(in Chinese)
王涛. LEMs四杆机构的分析及其特性参数的研究[D]. 北京:北京科技大学,2012. WANG T. Analysis of Four-bar Mechanism and Research of Characteristics Parameters of LEMs [D]. Beijing: University of Science & Technology Beijing, 2012.(in Chinese)
邱丽芳,胡锋,邹静. 基于伪刚体因子的LEMs设计[J]. 农业机械学报,2015,46(2): 365-371. QIU L F, HU F, ZOU J. Design of LEMs based on pseudo-rigid factor [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 365-371.(in Chinese)
JACOBSEN J O, CHEN G, HOWELL L L, et al.. Lamina emergent torsional (LET) joint [J]. Mechanism & Machine Theory, 2009, 44(11):2098-2109.
FERRELL D B, ISAAC Y F, MAGLEBY S P et al.. Development of criteria for Lamina emergent mechanism flexures with specific application to metals [J]. Journal of Mechanical Design, 2011, 133(3): 031009-1.
周慧. LEMs柔性铰链的分析与研究[D]. 北京:北京科技大学,2012. ZHOU H. Analysis and Research of Lamina Emergent Mechanisms Joint [D]. Beijing: University of Science & Technology Beijing, 2012.(in Chinese)
韦志鸿. LET柔性铰链的参数化设计及分析[D]. 北京:北京科技大学,2012. WEI ZH H. Parameter Design and Analysis of LET Flexure Hinge [D]. Beijing: University of Science & Technology Beijing, 2012.(in Chinese)
CHEN G, HOWELL L L. Two general solutions of torsional compliance for variable rectangular cross-section hinges in compliant mechanisms [J]. Precision Engineering, 2009, 33(3):268-274.
0
浏览量
356
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构