浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所 应用光学国家重点 实验室 超精密光学工程研究中心, 吉林 长春 130033
收稿日期:2015-04-03,
修回日期:2015-05-15,
纸质出版日期:2016-01-25
移动端阅览
张德福, 葛川, 李显凌等. 电容传感器线性度标定平台[J]. 光学精密工程, 2016,24(1): 143-151
ZHANG De-fu, GE Chuan, LI Xian-ling etc. Linearity calibration platform of capacitive sensors[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 143-151
张德福, 葛川, 李显凌等. 电容传感器线性度标定平台[J]. 光学精密工程, 2016,24(1): 143-151 DOI: 10.3788/OPE.20162401.0143.
ZHANG De-fu, GE Chuan, LI Xian-ling etc. Linearity calibration platform of capacitive sensors[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 143-151 DOI: 10.3788/OPE.20162401.0143.
设计了一种电容位移传感器在线标定平台
用于位移的高精度调节和检测。该平台的运动对称中心轴、测量光路的对称中心轴和传感器的传感轴共轴
故从测量原理上减小了阿贝误差。标定平台具有
z
/tip/tilt调节功能
保证了传感器的传感面和被测面板的被测面之间的装调对准。介绍了标定平台的组成和标定方法的原理
采用对称平行四边形机构实现了微位移调节
基于柔度矩阵法(CMM)分析了导向机构的输出柔度和行程。试验测得动平台行程为735.162 m
和有限元法(FEM)、CMM计算结果的误差分别为7.410%和4.633%
满足行程误差要求。经过标定补偿后
传感器的线性度由0.014 21%提高至0.006 231%。实验结果显示
该线性度标定方法精度高
标定后的传感器满足位移精密调节机构使用要求。
An on-line linearity calibration platform for capacitive displacement sensors is proposed to implement the high-precision adjustment and the measurement of displacement. The symmetry axis for movement
the measuring axis of an interferometer and the measuring axis of a sensor are collinear in the platform
so that the Abbe error is decreased in principle. For the
z
/tip/tilt adjustment function in the platform
the alignment between the sensor and the target surface is realized. The composition and principle of the calibration method are introduced and the micro-displacement is adjusted by a symmetrical parallelogram mechanism. Then
the output compliance and stroke of the guiding mechanism are analyzed based on Compliance Matrix Method(CMM). The experiment result demonstrates that the stroke of the calibration platform is 735.162 m and the errors are 7.410% and 4.633% comparing with that of the Finite Element Method(FEM) and CMM
respectively
which meet the requirement of the stroke. Moreover
the sensor linearity is improved from 0.014 21% to 0.006 231% after calibration calculation. The linearity calibration method has high-precision and it satisfies the requirement of fine displacement adjustment of the mechanism.
赵磊, 巩岩, 赵阳. 光刻投影物镜中的透镜X-Y柔性微动调整机构[J]. 光学精密工程, 2013, 21(6): 1425-1433. ZHAO L, GONG Y, ZHAO Y. Flexure-based X-Y micro-motion mechanism used in lithographic lens [J]. Opt. Precision Eng., 2013, 21(6): 1425-1433. (in Chinese)
姚建涛, 李立建, 许允斗, 等. 超静定六维力传感器静定测量模型及标定方法[J]. 仪器仪表学报, 2013, 34(9): 1927-1933. YAO J T, LI L J, XU Y D,et al.. Statically determinate measurement model and calibration method of statically indeterminate six-axis force sensor [J]. Chinese Journal of Science Instrument, 2013, 34(9): 1927-1933. (in Chinese)
尤晶晶, 李成刚, 吴洪涛. 并联式六维加速度传感器的参数辨识[J]. 光学精密工程, 2013, 21(10): 2627-2638. YOU J J, LI CH G,WU H T. Parameter identification of parallel type six-axis accelerometer [J]. Opt. Precision Eng., 2013, 21(10): 2627-2638. (in Chinese)
刘俊, 秦岚, 李敏, 等. 平板式压电六维力/力矩传感器的研制[J]. 光学精密工程, 2011, 19(7): 1569-1579. LIU J, QIN L, LI M, et al.. Development of parallel piezoelectric six-axis force/torque sensor [J]. Opt. Precision Eng., 2011, 19(7): 1569-1579. (in Chinese)
赵磊,刘巍,巩岩. 预紧式Stewart结构六维力/力矩传感器[J]. 光学精密工程, 2011, 19(12): 2954-2962. ZHAO L, LIU W, GONG Y. Pre-stressed six-axis force/torque sensor based on Stewart platform [J].Opt. Precision Eng., 2011, 19(12): 2954-2962. (in Chinese)
HAITJEMA H, SCHELLEKENS P H J, WETZELS. Calibration of displacement sensors up to 300μm with nanometer accuracy and direct traceability to a primary standard of length [J]. Metrologia, 2000, 37: 25-33.
FLEMING A J. A review of nanometer resolution position sensors: Operation and performance [J]. Sensor and Actuators A, 2013, 190: 106-126.
BEER F P, JOHNSTON E R, DEWOLF J T,et al.. Mechanics of materials [M]. New York: McGraw-Hill, 2012.
YOUNG W C, BUDYNAS R G.Roark's formulas for stress and strain [M]. New York: McGraw-Hill, 2002.
LOBONTIU N. Compliant mechanisms: design of flexure hinges [M]. Florida: CRC Press, 2003.
LI Y M, XU Q S. Design and analysis of a totally decoupled flexure-based XY parallel micromanipulator [J]. IEEE Transactions on Robotics, 2009, 25(3): 645-657.
LI Y M, HUANG J M, TANG H. A compliant parallel XY micromotion stage with complete kinematic decoupling [J]. IEEE Transactions on Automation Science and Engineering, 2012, 9(3): 538-553.
0
浏览量
372
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构