浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所, 吉林 长春 130033
2. 中国科学技术大学 自动化系,安徽 合肥,230027
收稿日期:2015-04-17,
修回日期:2015-06-16,
纸质出版日期:2016-01-25
移动端阅览
丛爽, 孙光立, 邓科等. 陀螺稳定平台扰动的自抗扰及其滤波控制[J]. 光学精密工程, 2016,24(1): 169-177
CONG Shuang, SUN Guang-li, DENG Ke etc. Active disturbance rejection and filter control of gyro-stabilized platform[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 169-177
丛爽, 孙光立, 邓科等. 陀螺稳定平台扰动的自抗扰及其滤波控制[J]. 光学精密工程, 2016,24(1): 169-177 DOI: 10.3788/OPE.20162401.0169.
CONG Shuang, SUN Guang-li, DENG Ke etc. Active disturbance rejection and filter control of gyro-stabilized platform[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 169-177 DOI: 10.3788/OPE.20162401.0169.
分析了影响陀螺稳定平台隔离控制精度的主要因素
包括被控系统模型中的未建模部分、状态的随机扰动以及输出信号的测量噪声等。研究了综合解决各方面影响因素的控制方案以进一步提高陀螺稳定平台隔离精度。针对上述影响因素
设计一个两步控制策略。第一步
利用自抗扰对系统中未建模部分进行观测及其前向补偿
将自抗扰控制中的反馈控制设计为PID控制
以实现抗平台扰动的调节控制;第二步
利用Kalman滤波器对系统中的状态扰动及测量噪声进行滤波消除。详细描述了提出的控制策略并对其性能进行了系统仿真实验及参数优化。结果表明
该方案在幅值为3°、频率为1/6 Hz的载体扰动下能达到4.61%的隔离度
与非线性摩擦力建模辨识及其前向补偿策略控制实际陀螺稳定平台达到的隔离度的最好值9.39%相比
文中提出的控制隔离性能提高了50.9%
具有更高的实用价值。
The main factors effect on isolation control accuracy of a gyro-stabilized platform were analyzed
including the un-modeled unit in a controlled system
the random disturbance of state and the measurement noise of an output signal. The control schemes to overcome these effect factors and improve the isolation accuracy of a gyro-stabilized platform system were explored. In order to improve the control accuracy
an integrated solution for eliminating all effect factors was researched and a two-step control strategy was proposed. The first step is to employ the Active Disturbance Rejection Control (ADRC) to observe and compensate the un-modeled unit and to design the feedback control in ADRC as PID controller to control the compensated system. The second step is to use a Kalman filter to eliminate the random disturbance and measurement noise. The control scheme was described in details and its performance was simulated. The results indicate that the isolation degree reaches 4.61% by using this control strategy when the disturbance of the platform is 3° and 1/6 Hz
which means the isolation performance has improved by 50.9% as comparing with the performance 9.39% from the control strategy which consists of the parameter identification of nonlinear friction and its forward compensation. The control strategy evidently has a higher practical application value.
丛爽,邓科,尚伟伟,等. 陀螺稳定平台的建模分析[J]. 科技导报, 2011, 29(9): 42-47. CONG SH, DENG K, SHANG W W,et al.. Modeling analysis on the gyro stabilized platform [J]. Science and Technology Review, 2011,29(9):42-47.(in Chinese)
卢广山,姜长生,张宏. 机载光电跟踪系统模糊控制的优化设计与仿真[J]. 航空学报, 2002, 23(1): 85-87. LU G SH, JIANG CH SH, ZHANG H. Optimization design and simulation of fuzzy controller in airborne electro-optical pointing and tracking systems[J]. Acta Aeronautica Et Astronautica Sinica, 2002, 23(1):85-87.(in Chinese)
李向旭,张曾科,姜敏. 两轴稳定平台的模糊--PID复合控制器设计与仿真[J]. 电光与控制, 2010, 17(1):69-72. LI X X, ZHANG Z K, JIANG M.Design and simulation of a fuzzy-PID composite controller for dual DOF stabilized platform[J]. Electronics Optics & Control, 2010, 17(1): 69-72.(in Chinese)
黎志强,许兆林,宋超,等. BP神经网络PID控制器在机载光电平台中的应用[J]. 电子测量与仪器学报, 2008, (z2): 687-691. LI ZH Q, XU ZH L, SONG CH, et al.. Application of neural network PID controller in airborne electro-optical tracking systems[J]. Journal of Electronic Measurement and Instrument, 2008, (z2): 687-691.(in Chinese)
沈晓洋,陈洪亮,刘昇. 机载陀螺稳定平台控制算法[J]. 电光与控制, 2011, 18(4):46-50. SHEN X Y, CHEN H L, LIU SH. A control algorithm for airborne gyro stabilized platform [J].Electronics Optics & Control, 2011, 18(4): 46-50.(in Chinese)
左哲,李东海,戴亚平,等. 陀螺稳定平台状态补偿控制[J]. 航空学报, 2008, 29(1):141-147. ZUO ZH,LI D H,DAI Y P, et al..State compensating control for gyro-stabilized platform [J].Acta Aeronautica Et Astronautica Sinica,2008,29(1): 141-147. (in Chinese)
李英,葛文奇,王绍彬,等. 稳定平台的自适应逆控制[J]. 光学精密工程,2009,17(11):2744-2749. LI Y, GE W Q, WANG SH B, et al..Adaptive inverse control of stable platform[J]. Opt. Precision Eng.,2009,17(11): 2744-2749.(in Chinese)
杨蒲,李奇. 陀螺稳定平台非线性摩擦的灰色滑模控制[J]. 系统工程与电子技术, 2008, 30(7):1328-1332. YANG P, LI Q.Nonlinear friction grey sliding mode control for gyro stabilized platform [J]. Systems Engineering and Electronics, 2008,30(7): 1328-1332.(in Chinese)
韩京清. 自抗扰控制技术--估计补偿不确定因素的控制技术[M]. 北京:国防工业出版社, 2008: 183-287. HAN J Q. Active Disturbance Rejection Control Technology-the Technology for Estimating and Compensating the Uncertainties [M]. Beijing: National Defense Industry Press, 2008: 183-287.(in Chinese)
李贤涛,张葆,沈宏海. 基于自抗扰控制技术提高航空光电稳定平台的扰动隔离度[J]. 光学精密工程 2014, 22(8): 2223-2231. LI X T, ZHANG B, SHEN H H. Improvement of isolation degree of aerial photoelectrical stabilized platform based on ADRC [J]. Opt. Precision Eng. , 2014, 22(8): 2223-2231.(in Chinese)
孙明玮,邱德敏,王永坤,等. 大口径深空探测天线抗风干扰伺服系统设计[J]. 光学精密工程, 2013, 21(6): 1568-1575. SUN M W, QIU D M, WANG Y K, et al..Wind disturbance rejection servo system design for large deep space observatory antenna [J]. Opt. Precision Eng., 2013, 21(6): 1568-1575.(in Chinese)
陈茂胜,金光,张涛,等. 积分反馈自抗扰控制力矩陀螺框架伺服系统设计[J]. 光学精密工程, 2012, 20(11): 2424-2432. CHEN M SH, JIN G, ZHANG T, et al..Design of gimbal servo system of CMG using active disturbance rejection control with integral feedback [J]. Opt. Precision Eng., 2012, 20(11): 2424-2432.(in Chinese)
邓科,丛爽,孔德杰,等. 陀螺稳定平台中速度环的非线性实验建模[J]. 系统工程与电子技术,2013,35(4):807-811. DENG K, CONG SH, KONG D J, et al..Experimental nonlinear modeling of velocity loop in gyro stabilized platform [J]. Journal of Systems Engineering and Electronics, 2013, 35(4): 807-811.(in Chinese)
宋康宁,丛爽,邓科,等. 自适应强跟踪鲁棒卡尔曼滤波器的设计[C]. 第33届中国控制会议, 南京, 2014: 6626-6631. SONG K N, CONG SH, DENG K, et al..Design of adaptive strong tracking and robust kalman Filter [C]. Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014: 6626-6631.(in Chinese)
陈增强,孙明玮,杨瑞光. 线性自抗扰控制器的稳定性研究[J]. 自动化学报, 2013, 39(5): 574-580. CHEN Z Q, SUN M W, YANG R G. Research on the stability of linear active disturbance rejection control [J]. Acta Automatica Sinica, 2013, 39(5): 574-580.(in Chinese)
GAO Z Q.Active disturbance rejection control: a paradigm shift in feedback control system design [C].Proceedings of the 2006 American Control Conference, Minneapolis,Minnesota,IEEE,2006:2399-2405.
YANG R G, SUN M W, CHEN Z Q.Active disturbance rejection control on first-order plan [J].Journal of Systems Engineering and Electronics, 2011, 22(1): 95-102.
GAO Z Q. Scaling and bandwidth-parameterization based controller tuning [C]. Proceedings of the 2003 American Control Conference, Denver,Colorado, IEEE,2003: 4989-4996.
0
浏览量
620
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构