浏览全部资源
扫码关注微信
信息工程大学,河南 郑州,450002
收稿日期:2015-09-25,
修回日期:2015-11-30,
纸质出版日期:2016-01-25
移动端阅览
刘志青, 李鹏程, 陈小卫等. 基于信息向量机的机载激光雷达点云数据分类[J]. 光学精密工程, 2016,24(1): 210-219
LIU Zhi-qing, LI Peng-cheng, CHEN Xiao-wei etc. Classification of airborne LiDAR point cloud data based on information vector machine[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 210-219
刘志青, 李鹏程, 陈小卫等. 基于信息向量机的机载激光雷达点云数据分类[J]. 光学精密工程, 2016,24(1): 210-219 DOI: 10.3788/OPE.20162401.0210.
LIU Zhi-qing, LI Peng-cheng, CHEN Xiao-wei etc. Classification of airborne LiDAR point cloud data based on information vector machine[J]. Editorial Office of Optics and Precision Engineering, 2016,24(1): 210-219 DOI: 10.3788/OPE.20162401.0210.
针对支持向量机应用于机载激光雷达(LiDAR)点云数据分类时存在的模型稀疏性弱、预测结果缺乏概率意义、训练时间长等缺点
提出一种基于信息向量机的LiDAR点云数据分类算法。该算法采取假定密度滤波算法进行近似逼近
将分类问题转化为回归问题;以最大后验微分熵为依据
选择LiDAR点云数据活动子集信息向量实现模型稀疏化;最后
通过边缘似然最大化进行核函数自适应获取
选择一对余分类方法实现了点云数据多类分类。 利用Niagara地区和非洲某地区点云数据进行了对比实验。结果表明:与支持向量机方法相比
基于信息向量机分类方法的分类精度分别提高到94.20%和90.78%
基向量数量分别减少到50个和90个
训练时间分别降低到5.86 s和8.03 s。实验结果验证了基于信息向量机的点云数据分类算法具有训练速度快、模型稀疏性强、分类精度高等优点。
When Support Vector Machines(SVMs) are applied in airborne LiDAR point data classification
their performance is limited by weak model sparseness
the prediction lack of probabilistic sense
and long training time. Therefore
a novel LiDAR point could data classification method was proposed based on an Informative Vector Machine (IVM). Firstly
the assumed density filtering was utilized to produce an approximation for probit classification noise model
and the classification problem was transformed into the regression problem. Then
the informative vectors of the active set in LiDAR point cloud data were chosen to achieve the model sparseness according to the largest posteriori differential entropy. Finally
in the training process
the kernel parameter was obtained by Marginal Likelihood Maximisation(MLM) and an One Against Rest (OAR) classifier was selected to realize multi-class classification. The LiDAR point cloud data from Niagara and Africa were selected for experiments in comparison with the SVM
and experimental results show that the classification accuracy of the method based on IVM increases to 94.20% and 90.78% respectively
the number of basis vectors reduce to 50 and 90 separately
and the training time decreases to 5.86 s and 8.03 s respectively. In conclusion
the classification method based on IVM has advantages in fast training speeds
strong model sparseness and high classification accuracy.
赖旭东. 机载LiDAR基础原理与方法[M]. 北京:电子工业出版社,2010. LAI X D. Principle and Application of Airborne LiDAR[M]. Beijing: Publishing House of Electronics Industry, 2010. (in Chinese)
张小红. 机载LiDAR测量技术理论与方法[M]. 武汉:武汉大学出版社,2007. ZHANG X H.Theory and Method of Airborne LiDAR Measuring Technology [M]. Wuhan: Wuhan University Press, 2007. (in Chinese)
孙美玲,李永树,陈强,等. 基于迭代多尺度形态学开重建的城区LiDAR滤波方法[J]. 红外与激光工程,2015,44(1):363-369. SUN M L, LI Y SH, CHEN Q, et al.. Iterative multi-scale filter based on morphological opening by reconstruction for LiDAR urban data [J]. Infrared and Laser Engineering, 2015,44(1):363-369. (in Chinese)
VOSSELMAN G.Slope based filtering of laser altimetry data [J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33(B3/2): 935-942.
李乐林,江万寿,郭程方. 基于区域多次回波点密度分析的城区LiDAR建筑物提取[J]. 国土资源遥感,2015,27(2):29-35. LI L L, JIANG W SH, GUO CH F. Classification of LiDAR point clouds in urban areas based on the analysis of regional multi-return density [J]. Remote Sensing for Land&Resources, 2015,27(2):29-35. (in Chinese)
张齐勇,岑敏仪,周国清,等. 城区LiDAR点云数据的树木提取[J]. 测绘学报,2009,38(4):330-335. ZHANG Q Y, CEN M Y, ZHOU G Q, et al.. Extracting trees from LiDAR data in urban region [J]. Acta Geodaetica et Cartographica Sinica, 2009,38(4):330-335. (in Chinese)
SAMADZADEGAN F, BIGDELI B, RAMZI R. A multiple classifier system for classification of LiDAR remote sensing data using multi-class SVM [C].Multiple Classifier Systems: 9th International Workshop, Cairo, Egypt:MCS, 2010:254-264.
吴军,刘荣,郭宁,等. SVM加权学习下的机载LiDAR数据多元分类研究[J]. 武汉大学学报:信息科学版,2013,38(1):1-6. WU J, LIU R, GUO N, et al.. Aerial LiDAR data classification using weighted support vector machines [J]. Geomatics and Information Science of Wuhan University, 2013,38(1):1-6. (in Chinese)
姚伏天, 钱沄涛. 高斯过程及其在高光谱图像分类中的应用[J]. 智能系统学报,2011,5(6): 396-404. YAO F T, QIAN Y T. Gaussian process and its applications in hyperspectral image classification [J]. Caai Transactions on Intelligent Systems, 2011, 5(6): 396-404. (in Chinese)
LAWRENCE N D, SEEGER M, HERBRICH R. The informative vector machine: a practical probabilistic alternative to the support vector machine [R]. Technical report, Department of Computer Science, Sheffield, UK, 2005.
徐翔, 刘建伟, 罗伟麟. 基于信息向量机的神经活动分类和译码研究[J]. 计算机工程,2010,36(7): 198-199, 202. XU X, LIU J W, LUO W L. Research on nerval activity classification and decoding based on informative vector machine [J]. Computer Engineering, 2010, 36(7): 198-199, 202.(in Chinese)
刘建伟, 徐翔, 罗伟麟. 基于OLPP和信息向量机的人脸识别[J]. 计算机工程,2010,36(7): 200-202. LIU J W, XU X, LUO W L. Face recognition based on orthogonal locality preserving projection and informative vector machine [J]. Computer Engineering, 2010, 36(7): 200-202.(in Chinese)
谭熊. 联合光谱和空间特征的高光谱影像分类技术研究[D]. 郑州:信息工程大学,2014. TAN X.Research on Classification Techniques for Hyperspectral Imagery Based on Combined Spectral and Spatial Features [D].Zhengzhou:PLA Information Engineering University, 2014.(in Chinese)
GIBBS M N, MACKAY D J C. Variational Gaussian process classifiers [J]. IEEE Transactions on Neural Networks, 2002, 11(6): 1458-1464.
MINKA T P. A Family of Algorithms for Approximate Bayesian Inference [D]. Cambridge:Massachusetts Institute of Technology, 2014.
CSATO L.Gaussian Processes-iterative Sparse Approximations [D]. Birmingham:Aston University, 2002.
MARTIN F M. A scaled conjugate gradient algorithm for fast supervised learn [J]. Neural Networks, 1993, 6: 525-533.
李航. 统计学习方法[M]. 北京:清华大学出版社,2012. LI H. Statistical Learning Method [M]. Beijing: Tsinghua University Press, 2012. (in Chinese)
0
浏览量
423
下载量
20
CSCD
关联资源
相关文章
相关作者
相关机构