浏览全部资源
扫码关注微信
西北工业大学 理学院 陕西省光信息技术重点实验室,陕西 西安,710129
收稿日期:2015-11-04,
修回日期:2015-12-09,
纸质出版日期:2016-02-25
移动端阅览
徐健, 杨德兴, 姜亚军等. 利用双光杠杆测量非等截面光纤布拉格光栅传感器的应变系数[J]. 光学精密工程, 2016,24(2): 245-250
XU Jian, YANG De-xing, JIANG Ya-jun etc. Measurement of strain coefficient of unequal cross-section FBG sensor based on double optical levers[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 245-250
徐健, 杨德兴, 姜亚军等. 利用双光杠杆测量非等截面光纤布拉格光栅传感器的应变系数[J]. 光学精密工程, 2016,24(2): 245-250 DOI: 10.3788/OPE.20162402.0245.
XU Jian, YANG De-xing, JIANG Ya-jun etc. Measurement of strain coefficient of unequal cross-section FBG sensor based on double optical levers[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 245-250 DOI: 10.3788/OPE.20162402.0245.
使用单个光杠杆监测传感器应变时
传感器两端的被夹持部位受力后易与电子万能试验机的夹持器产生滑移。为了消除滑移影响以提高测试精度
本文使用两套光杠杆建立了测量弹性受力部位呈非等截面的光纤布拉格光栅(FBG)传感器等效应变系数
eff
的实验测量系统。测试时
将两套光杠杆的平面反射镜分别安放在传感器弹性受力部位两侧的固定端端面上
测量出两个固定端在受力变形后的相对位移和相应的FBG中心波长变化量。然后
使用曲线拟合法和累加均值法对实验测得的数据进行处理来获得
eff
。建立了仿真模型
得到了
eff
预估值并与实测值进行了对比。结果显示:实验测得的
eff
为0.6817/pm
精度为0.91%
与仿真获得的预估值0.6720/pm相差仅为1.42%。该方法满足了准确测量非等截面结构FBG传感器应变系数的要求。
When a single optical lever is used to test the strain coefficients of Fiber Bragg Gratings(FBGs)
slip effects may take place in the clamping part between the testing machine and the sensor. To effectively eliminate the slip effects and improve the test accuracy
a measurement system based on double optical levers was established to measure the strain coefficient of a FBG sensor with an elastic stress element by unequal cross sections. In the measurement
two optical lever mirrors were put respectively on the end faces of two fixed ends beside the sensor's elastic stress element. By measuring the relative displacement of two fixed ends
the equivalent strain coefficient of the sensor was obtained by data processing with the curve fitting method and cumulative average method. A simulation model was established
and the experiment and simulation were performed and compared. The results indicate that the equivalent strain coefficient of the sensor
n
eff
is 0.6817/pm obtained by the experiment and the precision is 0.91%. Compared to the coefficient 0.6720/pm from the software simulation
the difference is 1.42%. It is shown that the measurement method satisfies with the requirements for accurately measuring the strain coefficients of complex-structure sensors.
唐炜,史仪凯. Bragg光纤传感技术应用研究[J]. 光学精密工程,2002,10(1):79-83. TANG W, SHI Y K. Optical fiber Bragg grating sensing technology[J]. Opt. Precision Eng.,2002, 10(1):79-83.(in Chinese)
姜德生,何伟. 光纤光栅传感器的应用概况[J]. 光电子·激光,2002,13(4):420-430. JIANG D SH, HE W. Review of applications for fiber Bragg grating sensors[J]. Journal of Optoelectronics·Laser. 2002,13(4):420-430.(in Chinese)
乔学光,冯飞,贾振安,等. 光纤光栅高压传感器封装技术实验研究[J]. 光电子·激光, 2009,20(1):9-11. QIAO X G, FENG F, JIA ZH A, et al.. Study on pressure sensing technology of a compensable fiber grating[J]. Journal of Optoelectronics·Laser, 2009,20(1):9-11.(in Chinese)
吴入军,郑百林,付昆昆,等. 表面粘贴式光纤布拉格光栅传感器层状结构对测量应变的影响[J]. 光学精密工程,2014, 22(12):3183-3190. WU R J, ZHENG B L, FU K K, et al.. Influence of layered structure for surface-bonded FBG sensor on measured strain[J]. Opt. Precision Eng., 2014, 22(12):3183-3190.(in Chinese)
吴俊,陈伟民,章鹏,等. 粘接层弹性模量对光纤Bragg光栅传感器应变传递性能的影响[J]. 光学精密工程,2011,19(12):2941-2946. WU J, CHEN W M, ZHANG P, et al.. Influence of bond layer characteristics on strain sensing properties of FBG sensors[J]. Opt. Precision Eng., 2011, 19(12):2941-2946.(in Chinese)
XU J, YANG D X, JIANG Y J, et al.. Packaged FBG sensors for real-time stress monitoring on deep-water riser[C]. Proceedings of the 2014 International Society for Optical Engineering, Beijing:SPIE/COS Photonics Asia, 2014:92740F-92740F-6.
NAGAOKA H. Hysteresis attending the change of length by magnetization in nickel and iron[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1894, 37(224):131-140.
JONES R. Some developments and applications of the optical lever[J]. Journal of Scientific Instruments, 1961, 38(2):37.
COOK R, HAMM C. Fiber optic lever displacement transducer[J]. Applied Optics,1979, 18(19):3230-3241.
YAO X C, RECTOR D M, GEORGE J S. Optical lever recording of displacements from activated lobster nerve bundles and Nitella internodes[J]. Applied Optics,2003, 42(16):2972-2978.
KATO N, SUZUKI I, KIKUTA H, et al.. Force-balancing force sensor with an optical lever[J]. Review of Scientific Instruments,1995, 66(12):5532-5536.
EVANS D R, CRAIG V S. Sensing cantilever beam bending by the optical lever technique and its application to surface stress[J]. The Journal of Physical Chemistry B, 2006, 110(11):5450-5461.
ALEXANDER S, HELLEMANS L, MARTI O, et al.. An atomic-resolution atomic-force microscope implemented using an optical lever[J]. Journal of Applied Physics, 1989, 65(1):164-167.
SADER J E, LU J, MULVANEY P. Effect of cantilever geometry on the optical lever sensitivities and thermal noise method of the atomic force microscope[J]. Review of Scientific Instruments, 2014, 85(113702):1-6.
HOGAN J, HAMMER J, CHIOW S W, et al.. Precision angle sensor using an optical lever inside a Sagnac interferometer[J]. Optics Letters, 2011, 36(9):1698-1700.
刘璐,李艳宁,吴森,等. 基于显微光杠杆技术的微结构偏转角测量系统[J]. 光学技术,2014,40(3):219-224. LIU L, LI Y N, WU S, et al.. Deflection angle measurement system for microstructure based on microscope optical lever[J]. Optical Technique, 2014, 40(3):219-224.(in Chinese)
RAJAVELU M, SIVAKUMAR D, DANIEL R J, et al.. Perforated diaphragms employed piezoresistive MEMS pressure sensor for sensitivity enhancement in gas flow measurement[J]. Flow Measurement and Instrumentation, 2014, 35(17):63-75.
ANADKAT N, RANGACHAR M. Simulation based analysis of capacitive pressure sensor with COMSOL multiphysics[J]. International Journal of Engineering Research and Technology, 2015, 4(4):848-852.
0
浏览量
507
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构