浏览全部资源
扫码关注微信
1. 北京跟踪与通信技术研究所 空间目标测量重点实验室, 北京 100094
2. 中国卫星海上测控部, 江苏 江阴 214431
收稿日期:2015-11-02,
修回日期:2015-12-07,
纸质出版日期:2016-02-25
移动端阅览
李明, 薛莉, 黄晨等. 基于有效回波概率估计空间碎片激光测距系统作用距离[J]. 光学精密工程, 2016,24(2): 260-267
LI Ming, XUE Li, HUANG Chen etc. Estimation of detection range for space debris laser ranging system based on efficient echo probability[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 260-267
李明, 薛莉, 黄晨等. 基于有效回波概率估计空间碎片激光测距系统作用距离[J]. 光学精密工程, 2016,24(2): 260-267 DOI: 10.3788/OPE.20162402.0260.
LI Ming, XUE Li, HUANG Chen etc. Estimation of detection range for space debris laser ranging system based on efficient echo probability[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 260-267 DOI: 10.3788/OPE.20162402.0260.
基于回波光子数方程估计空间碎片激光测距系统作用距离时
最小可接受回波光子数很难确定。本文提出了通过改变空间碎片实测数据回波稀疏性获得精度变化曲线的退化模型
以"精度不变"作为衡量条件
确定保精度情况下系统最小可识别有效回波概率
从而估算系统作用距离的方法。首先
根据单光子雪崩探测器"关门"特性
得到了有效回波概率与测量距离关系。然后
建立实测数据的稀疏性退化模型得到测量精度与有效回波概率的跃变曲线
根据精度曲线中"保精度平台"的"跳变点"获得最小可识别有效回波概率。最后
根据最小可识别回波概率获得系统对不同大小典型空间碎片的作用距离。分别处理了有效截面积为3.8840
6.3912和9.8555 m
2
的3种典型空间碎片的实验数据
结果表明:系统在满足m级测距精度的前提下
可识别的最小有效回波概率为0.02~0.044
对上述不同特性典型空间碎片相应的最大作用距离分别为820
1520和2250 km。提出的模型在精度不变情况下解决了系统最小可识别有效回波概率难以确定的问题
大大减少了实验成本。
Echo photon number equation is usually used to estimate the detection distance of a space debris laser ranging system. However
it can not exactly determine the minimum recognizable echo number threshold. In this article
a degradation model was proposed by degrading the echo sparsity of measured data to obtain a precision curve and to effectively evaluate the minimum recognizable echo probability with the precision guaranteed
and then to estimate the detection distance of the ranging system. Firstly
the relationship of efficient echo probability and ranging distance was obtained based on the "shutting down" effect of Single Photon Avalanche Diodes(SPADs). After that
the jumping curves of ranging precision and efficient echo probability were drawn based on experimental data. From the "jumping threshold" on "precision plateau" in jumping curves
the minimum recognizable echo probability was calculated and the detection distance for typical space debris with different sizes was obtained. The experiments for three typical space debris with Radar Cross Sections(RCSs) of 3.8840 m
2
6.3912 m
2
and 9.8555 m
2
were performed. The results show that the minimum recognizable efficient echo probability is 0.02-0.04 with the meter-level precision guaranteed and the maximum detection range for these typical space debris are 820 km
1520 km and 2250 km correspondingly. This proposed degradation model effectively solves the problem for determining minimum recognizable echo probability
and reduces experimental costs.
GREENE B, GAO Y, MOORE C. Laser tracking of space debris[C].13th International Workshop on Laser Ranging Instrumentation, Washington DC,2002.
ZHANG Z P, YANG F M, ZHANG H F, et al.. The use of laser ranging to measure space debris[J]. Research in Astronomy and Astrophysics, 2012, 12(2):212-218.
潘秋娟, 房庆海, 杨艳. 高重复率卫星激光测距的关键技术及其进展[J]. 激光与光电子学进展, 2007, 44(7):33-39. PAN Q J, FANG Q H, YANG Y. Key technique and its progress in satellite laser ranging at high repetition rate[J]. Laser & Optoelectronics Progress, 2007, 44(7):33-39.(in Chinese)
KIRCHNER G, HAUSLEITNER W, CRISTEA E. Ajisai spin parameter determination using Graz kilohertz satellite laser ranging data[J]. Geoscience and Remote Sensing, IEEE Transactions on, 2007, 45(1):201-205.
KIRCHNER G, KOIDL F, Friederich F, et al.. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 2013, 51(1):21-24.
GIBBS P, APPLEBY G, POTTER C. A reassessment of laser ranging accuracy at SGF Herstmonceux, UK[C]. Proceedings of 15th International Workshop on Laser Ranging, Canberra, 2007:154-158.
张忠萍, 张海峰, 吴志波, 等. 高精度千赫兹重复频率卫星激光测距系统及实测结果[J]. 科学通报, 2011, 56(15):1177-1183. ZHANG ZH P, ZHANG H F, WU ZH B, et al.. kHz repetition satellite laser ranging system with high precision and measuring results[J]. Chinese Science Bulletin, 2011, 56(15):1177-1183.(in Chinese)
张海涛,李祝莲. 共光路高重频激光测距主回波重叠现象的计算机仿真[J]. 天文研究与技术,2013,10(2):147-151. ZHANG H T, LI ZH L. Simulation of overlapping between main wave and echo in common optical-path high-repetition rate laser ranging[J]. Astronomical Research and Technology, 2013, 10(2):147-151.(in Chinese)
李语强, 李祝莲, 伏红林, 等. 空间碎片漫反射激光测距试验[J]. 中国激光, 2011, 38(9):154-158. LI Y Q, LI ZH L, FU H L, et al.. Experimentation of diffuse reflection laser ranging of space debris[J]. Chinese Journal of Lasers, 2011, 38(9):154-158.(in Chinese)
董雪. 高重复频率空间碎片激光测距系统研究[D]. 长春:长春光学精密机械与物理研究所, 2014. DONG X. Research on High Repetition Space Debris Laser Ranging System[D]. Changchun:Changchun Institute of Optics, Fine Mechanics and Physics, 2014.(in Chinese)
李欣, 王培源, 邹彤, 等. kHz激光器在武汉卫星观测站的测距实验[J]. 强激光与粒子束, 2011, 23(2):367-370. LI X, WANG P Y, ZOU T, et al.. Experiment on kHz laser ranging at Wuhan satellite laser ranging station[J]. High Power Laser and Particle Beams, 2011, 23(2):367-370.(in Chinese)
KIRCHNER G, KOIDL F, FRIEDERICH F, et al.. Laser measurements to space debris from Graz SLR station[J]. Advances in Space Research, 2013, 51(1):21-24.
王卫兵, 王挺峰, 郭劲. 基于星载光电成像跟踪测距的空间目标定轨[J]. 光学精密工程, 2015, 23(2):528-539. WANG W B, WANG T F, GUO J. Orbit determination for space target based on opto-electrical imaging, tracking and ranging on satellite[J]. Opt. Precision Eng., 2015, 23(2):528-539.(in Chinese)
SCHAEL U, ROTHE H. Advanced system model for 1574nm imaging, scannerless, eye-safe laser radar[C]. International Symposium on Optical Science and Technology, 2002:107-114.
STEINVALL O. Laser system range calculation and the lambert W function[J]. Applied Optics, 2009, 48(4):B1-B7.
LUO H, XU B, XU H, et al.. Maximum detection range limitation of pulse laser radar with Geiger-mode avalanche photodiode array[J]. Journal of Modern Optics, 2015, 62(9):761-768.
罗韩君, 詹杰, 丰元, 等. 基于盖革模式APD的光子计数激光雷达探测距离研究[J]. 光电工程, 2013, 40(12):80-88. LUO H J, ZHAN J, FENG Y, et al.. Detection range of photon counting laser radar based on Geiger-mode APD[J]. Opto-electronic Engineering, 2013, 40(12):80-88.(in Chinese)
薛莉, 李明, 李希宇, 等. 激光测距多光子分立时刻的反卷积解算方法[J]. 中国激光, 2015, 42(7):0702007. XUE L, LI M, LI X Y, et al.. Multi-photon time-of-flight resolution enhancement by deconvolution in laser ranging[J]. Chinese Journal of Lasers, 2015,42(7):0702007.(in Chinese)
赵帅, 郭劲, 刘洪波, 等. 多像素光子计数器在单光子探测中的应用[J]. 光学精密工程, 2011, 19(5):972-976. ZHAO SH, GUO J, LIU H B, et al.. Application of multi-pixel photon counters to single photon detection[J]. Opt. Precision Eng., 2011, 19(5):972-976.(in Chinese)
何伟基, 司马博羽, 程耀进, 等. 基于盖革-雪崩光电二极管的光子计数成像[J]. 光学精密工程, 2012, 20(8):1831-1837. HE W J, SIMA B Y, CHENG Y J, et al.. Photon counting imaging based on GM-APD[J]. Opt. Precision Eng., 2012, 20(8):1831-1837.(in Chinese)
刘丽娜, 张国青. 利用多像素光子计数器的光学串话效应提高光子探测效率[J]. 中国光学, 2015, 8(2):205-210. LIU L N, ZHANG G Q. Increasing the photon detection efficiency by the optical crosstalk effect of multi-pixel photon counter[J]. Chinese Optics, 2015, 8(2):205-210.(in Chinese)
徐文清, 詹杰, 徐青山. 天空背景亮度测量系统的研制[J]. 光学精密工程, 2013, 21(1):46-51. XU W Q, ZHAN J, XU Q SH. Development of measuring instrument for sky background brightness[J]. Opt. Precision Eng., 2013, 21(1):46-51.(in Chinese)
黄宇, 张晓芳, 俞信. 光子成像静止点目标的管道滤波探测方法[J]. 中国光学, 2013, 6(1):73-79. HUANG Y, ZHANG X F, YU X. Pipeline filtering detection of stationary point targets in photon images[J]. Chinese Optics, 2013, 6(1):73-79.(in Chinese)
尼启良. 使用曲面微通道板和感应电荷位置灵敏阳极的软X射线-极紫外光子计数成像探测器研究[J]. 中国光学, 2015, 8(5):847-872. NI Q L. Soft X-ray and extreme ultraviolet photon-counting imaging detector with curved surface micro-channel plate and induced charge position-sensitive anode[J]. Chinese Optics, 2015, 8(5):847-872.(in Chinese)
0
浏览量
673
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构