浏览全部资源
扫码关注微信
1. 南京理工大学 电子工程与光电技术学院,江苏 南京,210094
2. 中国工程物理研究院 电子工程研究所, 四川 绵阳 621999
收稿日期:2015-08-20,
修回日期:2015-09-13,
纸质出版日期:2016-02-25
移动端阅览
姚明秋, 唐彬, 苏伟. 单晶硅各向异性湿法刻蚀的形貌控制[J]. 光学精密工程, 2016,24(2): 350-357
YAO Ming-qiu, TANG Bin, SU Wei. Morphologic control of wet anisotropic silicon etching[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 350-357
姚明秋, 唐彬, 苏伟. 单晶硅各向异性湿法刻蚀的形貌控制[J]. 光学精密工程, 2016,24(2): 350-357 DOI: 10.3788/OPE.20162402.0350.
YAO Ming-qiu, TANG Bin, SU Wei. Morphologic control of wet anisotropic silicon etching[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 350-357 DOI: 10.3788/OPE.20162402.0350.
针对摆式微加速度计的制作
对利用两种添加剂共同修饰的TMAH刻蚀液的单晶硅湿法刻蚀技术及其相关刻蚀特性进行了研究。分析了两种添加剂之间的作用机理及对单晶硅湿法刻蚀的影响
选择合适的添加剂刻蚀液配比
实现了稳定的刻蚀形貌控制。通过两种添加剂的共同作用
获得了具有光滑刻蚀表面(粗糙度约为1 nm)和良好凸角保护(凸角侧蚀比率小于0.8)的刻蚀形貌。实验结果表明
在三重溶液(TMAH+Triton-X-100+IPA)下的刻蚀形貌具有明显优势。最后
基于添加剂对疏水性单晶硅材料的作用机理及表面张力调节
表面活性剂和酒精类添加剂之间的相互作用分析了刻蚀形貌发生变化的原因。以典型悬臂梁-质量块的制作为例
验证了采用该单晶硅刻蚀形貌控制方法可以获得微加速度计光滑的悬臂梁表面和无需凸角补偿的完整质量块。相比于其它制作工艺
该方法简单、易操作
有利于提高微机电器件的性能。
For fabrication of microaccelerometers with beam-mass structures
an anisotropic wet silicon etching technology based on ternary TMAH(tetramethyl ammonium hydroxide) solutions containing Triton and IPA was proposed and corresponding etching characteristics was investigated. The underlying mechanism between two kinds of additives(the Triton and IPA) and its effect on the wet silicon etching were analyzed. The appropriate ratio of additives was chosen to control the etching morphology. By a combined action of two kinds of additives
a mirror-like finish surface(
R
a
≈1 nm) and high reduction of undercutting(the ratio of undercut at the convex corner less than 0.8) were achieved synchronously. The experimental results show that the etched morphology has been dramatically improved by the ternary solutions. Furthermore
the reasons affecting the etched morphology were discussed
and the underlying mechanism on hydrophobic silicon surface
surface tension adjustion and the reciprocity between surfactant and alcohol were used to explain the new etched characteristics. Finally
by taking fabrication of a spring-mass structure for an example
the proposed method is verified by obtaining a very smooth cantilever and a complete mass structure without convex corner compensation. As compared to some other fabrication techniques
this method is very simple
easy to operate and useful in improving the quality of devices.
DUTTA S, IMRAN M, KUMAR P, PAL R,et al.. Comparison of etch characteristics of KOH, TMAH and EDP for bulk micromachining of silicon(110)[J]. Microsystem Technologies, 2011,17(10-11):1621-1628.
TANAKA H, CHENG D, SHIKIDA M,et al.. Characterization of anisotropic wet etching properties of single crystal silicon:Effects of ppb-level of Cu and Pb in KOH solution[J]. Sensors and Actuators A:Physical, 2006,128(1):125-131.
TANAKA H, CHENG D, SHIKIDA M, SATO K. Effect of magnesium in KOH solution on the anisotropic wet etching of silicon[J]. Sensors and Actuators A:Physical, 2007,134(2):465-470.
曾毅波, 王凌云, 谷丹丹, 等. 超声技术在硅湿法腐蚀中的应用[J]. 光学精密工程, 2009, 17(1):166-171. ZENG Y B, WANG L Y, GU D D,et al.. Application of ultrasonic technology to wet etching of silicon[J]. Opt. Precision Eng., 2009, 17(1):166-171.(in chinese)
杨增涛, 冷俊林, 梅勇,等. 硅各向异性浅槽腐蚀实验研究[J]. 压电与声光, 2011,(4), 513-516. YANG Z T, LENG J L, MEI Y, et al.. The experimental study on anisotropic etching of silicon shallow trends[J]. Piezoelectrics and Acoustooptics, 2011,(4), 513-516.(in chinese)
MACKAY R E, LIONIS N, LE H R. 3D surface topography and reflectivity of anisotropic etched silicon micromirrors for BioMEMS[J]. Microsystem Technologies, 2011,17(12):1763-1770.
JUN K H, KIM B J, KIM J S. Effect of additives on the anisotropic etching of silicon by using a TMAH based solution[J]. Electronic Materials Letters, 2015,11(5):871-880.
PAL P, GOSALVEZ M A, SATO K. Etched profile control in anisotropic etching of silicon by TMAH+Triton[J]. Journal of Micromechanics and Microengineering, 2012,22:065013.
ROLA K P, ZUBEL I. Application of triton X-100 surfactant for silicon anisotropic etching in KOH-based solutions[J]. Materials science-poland, 2013, 31(4):525-530.
ZUBEL I, KRAMKOWSKA M, ROLA K P. Silicon anisotropic etching in TMAH solutions containing alcohol and surfactant additives[J]. Sensors and Actuators A:Physical, 2012,178:126-135.
CHENG D, GOSALVEZ M A, HORI T, et al.. Improvement in smoothness of anisotropically etched silicon surfaces:effects of surfactant and TMAH concentrations[J]. Sensors and Actuators A:Physical, 2006, 125:415-421.
YANG C, YANG C, CHEN P. Study on anisotropic silicon etching characteristics in various surfactant-added tetramethyl ammonium hydroxide water solutions[J]. Journal of Micromechanics and Microengineering, 2005, 15:2028-2037.
TANG B, PAL P, GOSALVEZ M A, et al.. Ellipsometry study of the adsorbed surfactant thickness on Si{110} and Si{100} and the effect of pre-adsorbed surfactant layer on etching characteristics in TMAH[J]. Sensors and Actuators A:Physical, 2009,156:334-341.
ZUBEL I, ROLA K, KRAMKOWSKA M. The effect of isopropyl alcohol concentration on the etching process of Si-substrates in KOH solutions[J]. Sensors and Actuators A:Physical, 2011, 171:436-445.
BROCKMEIER A, RODRIGUEZ F J SANTOS, HARRISON M, et al.. Surface tension and its role for vertical wet etching of silicon[J].Journal of Micromechanics and Microengineering, 2012,22(12):125012.
KRAMKOWSKA M, ZUBEL I. Silicon anisotropic etching in KOH and TMAH with modified surface tension[J]. Procedia Chemistry, 2009, 1:774-777.
TANG B, SATO K, GOSALVEZ M A. Sharp silicon tips with different aspect ratios in wet etching/DRIE and surfactant-modified TMAH etching[J]. Sensors and Actuators A:Physical, 2012, 188:220-229.
TANG B, SATO K, XI S W, et al.. Process development of an all-silicon capacitive accelerometer with a highly symmetrical spring-mass structure etched in TMAH + Triton-X-100[J]. Sensors and Actuators A:Physical, 2014, 217:105-110.
0
浏览量
528
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构