浏览全部资源
扫码关注微信
大连理工大学 精密与特种加工教育部重点实验室,辽宁 大连,116021
收稿日期:2015-06-01,
修回日期:2015-08-18,
纸质出版日期:2016-02-25
移动端阅览
郭晓光, 刘子源, 郑桂林等. KDP晶体三倍频晶面微观力学行为及加工性能[J]. 光学精密工程, 2016,24(2): 398-405
GUO Xiao-guang, LIU Zi-yuan, ZHENG Gui-lin etc. Micro-mechanical behavior and machining property for tripler plane of KDP crystal[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 398-405
郭晓光, 刘子源, 郑桂林等. KDP晶体三倍频晶面微观力学行为及加工性能[J]. 光学精密工程, 2016,24(2): 398-405 DOI: 10.3788/OPE.20162402.0398.
GUO Xiao-guang, LIU Zi-yuan, ZHENG Gui-lin etc. Micro-mechanical behavior and machining property for tripler plane of KDP crystal[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 398-405 DOI: 10.3788/OPE.20162402.0398.
为了揭示磷酸二氢钾(KDP)晶体三倍频晶面微观弹塑性力学行为及加工性能
开展了纳米压痕研究。建立了KDP晶体三倍频晶面各向异性力学模型
基于光滑粒子流体动力学(SPH)方法对纳米压痕进行了数值仿真并完成了纳米压痕测试实验。实验结果表明:实验与仿真计算的载荷-压入深度关系曲线的相关系数为0.996328
吻合度较高
验证了力学模型的正确性
得出KDP晶体三倍频晶面的屈服强度为240 MPa。数值仿真结果显示:由于材料的各向异性
工件内部应力呈不规则圆弧状分布;载荷大小与等效应力影响深度呈近似线性递增关系;材料表面等效塑性应变分布形状与压头投影面几何形状相类似
存在复映效果。当载荷小于2 mN时
各压头的残余应力深度差异性较小(小于0.2m);随着载荷逐渐增大
这种差异不断扩大。得到的结果为实现KDP晶体三倍频晶面的高效低损伤加工提供了理论支撑。
To reveal the micro elastic-plastic mechanic behavior and the machining property of tripler plane of a potassium dihydrogen phosphate(KDP) crystal
the nano-indentation process was researched. An anisotropic mechanical model for the tripler plane of KDP crystal was established. Then the nano-indentation numerical simulation based on Smoothed Particle Hydrodynamics(SPH) method was performed and the nano-indentation experiments were accomplished. The results indicate that the correlation coefficient between the experimental load-indentation depth curve and the simulation one is 0.996328
showing a higher goodness of fit and verifying the correctness of the mechanical model. Moreover
the yield strength of tripler plane of the KDP crystal is 240 MPa. Because of the anisotropy property of the material
the stress inside the workpiece is irregular arc shape distribution
and the relationship between the magnitude of load and the influence depth of equivalent stress is an approximate linear increasing. The distribution shape of equivalent plastic strain on the material surface is similar to the geometrical shape of the indenter projective plane
which verifies that the reflection effect exists. When the load is lower than 2 mN
the differences of the residual stress's depths among the indenters are less than 0.2m. As the load increases gradually
the differences are widening. The research results provide theoretical supports for machining the tripler planes of KDP crystals in high efficiency and low damage.
杨力. 先进光学制造技术[M]. 北京:科学出版社, 2001. YANG L. Advanced Optical Manufacture Technology[M]. Beijing:Science Press, 2001.
PENG J, ZHANG L C, LU X CH. Elastic-plastic deformation of KDP crystals under nanoindentation[J]. Materials Science Forum, 2014, 773-774:706-711.
郭俊杰, 邱丽蓉, 王允, 等. 用于惯性约束聚变靶丸测量的激光差动共焦传感器[J]. 光学精密工程, 2013, 21(3):644-650. GUO J J, QIU L R, WANG Y, et al.. Laser differential confocal sensor for ICF capsule measurement[J]. Opt. Precision Eng., 2013, 21(3):644-650.(in Chinese)
CHEN W Q, LIANG Y CH, LUO X CH, et al.. Multi-scale surface simulation of the KDP crystal fly cutting machining[J]. International Journal of Advanced Manufacturing Technology, 2014, 73(1-4):289-297.
DENG X W, ZHU Q H, ZHENG W G, et al.. Research and construction progress of SG-Ⅲ laser facility[C]. Conference on High-power Lasers and Applications Ⅶ,Beijing,2014.
XU D P, ZHANG R, TIAN X C, et al.. Progress on the suppression of FM-to-AM modulations in SG-Ⅲ laser facility[C]. Proc. of SPIE, 2014, 9255:1-6.
TIAN Y, HAN W, CAO H B, et al.. Characteristics of laser-induced surface damage on large-aperture KDP crystals at 351nm[J]. CHIN. PHYS. LETT., 2015, 32(2):027801-1-027801-3.
吴东江, 曹先锁, 王强国, 等. KDP晶体加工表面的亚表面损伤检测与分析[J]. 光学精密工程, 2007, 15(11):1721-1725. WU D J, CAO X S, WANG Q G, et al.. Damage detection and analysis of machined KDP crystal subsurface[J]. Opt. Precision Eng., 2007, 15(11):1721-1725.(in Chinese)
XIAO Y, CHEN M J, YANG Y T, et al.. Research on the critical condition of brittle-ductile transition about micro-milling of KDP crystal and experimental verification[J]. International Journal of Precision Engineering and Manufacturing, 2015, 16(2):351-358.
白林山, 熊伟, 储向峰, 等. SiO2/CeO2复合磨粒的制备及在蓝宝石晶片抛光中的应用[J]. 光学精密工程, 2014, 22(5):1289-1293. BAI L SH, XIONG W, CHU X F, et al.. Preparation of nano SiO2/CeO2 composite and their applications to CMP on sapphire substrates[J]. Opt. Precision Eng., 2014, 22(5):1289-1293.(in Chinese)
郭兵, 赵清亮, 陈冰, 等. 光学玻璃的激光微结构化砂轮精密磨削[J]. 光学精密工程, 2014, 22(10):2659-2665. GUO B, ZHAO Q L, CHEN B, et al.. Precision grinding of optical glasses by laser micro-structured grinding wheels[J]. Opt. Precision Eng., 2014, 22(10):2659-2665.(in Chinese)
ZHAO H W, ZHANG P, LIU H D. Influences of residual stress induced by cutting on subsequent scratch using smooth particle hydrodynamic(SPH)[J]. Materials Transactions, 2014, 55(9):1440-1444.
FANG T, LAMBROPOULOS J C. Microhardness and indentation fracture of potassium dihydrogen phosphate(KDP)[J]. Journal of the American Ceramic Society, 2002, 85(1):174-178.
KUCHEYEV S O, SIEKHAUS W J, LAND T A., et al.. Mechanical response of KD2xH2(1-x)PO4 crystals during nanoindentation[J]. Applied Physics Letters, 2004, 84(13):2274-2276.
LU CH P, GAO H, WANG J H, et al.. Mechanical properties of potassium dihydrogen phosphate single crystal by the nanoindentation technique[J]. Materials and Manufacturing Processes, 2010,25(8):740-748.
GUO X G, ZHANG X J, TANG X ZH, et al.. Nanoindentation on the doubler plane of KDP single crystal[J]. Journal of Semiconductors, 2013, 34(3):034001-1-034001-4.
王洪祥, 马恩财, 高石, 等. 磷酸二氢钾(KDP)晶体纳米压痕过程的有限元分析[J]. 材料科学与工艺, 2009, 17(1):40-46. WANG H X, MA E C, GAO SH, et al.. Finite element analysis on nanoindentation process of KDP crystal[J]. Materials Science and Technology, 2009, 17(1):40-46.(in Chinese)
陈维锋. KDP晶体压痕实验及有限元仿真[D]. 哈尔滨:哈尔滨工业大学, 2006. CHEN W F. Indentation experiment and finite element simulation research on KDP crystal[D]. Harbin:Harbin Institute of Technology, 2006.(in Chinese)
LUCY L B. A numerical approach to the testing of fusion process[J]. Astronomy Journal, 1977, 88:1013-1024.
GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics:theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181:375-389.
SU C, ZHANG Y, HUO J M. Numerical simulation and analysis for metal cutting processes based on FEM and SPH[C]. Proceedings of the seventh International Conference on System Simulation and Scientific Computing, Chengdu, P.R. China,2008:1325-1328.
GUO X G, WEI Y J, JIN Z J, et al.. A numerical model for optical glass cutting based on SPH method[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(5-8):1277-1283.
孙云. KDP晶体力学性能与开裂现象研究[D]. 山东:山东大学, 2012. SUN Y. Study on the mechanical properties and cracking phenomenon of KDP crystal[D]. Shandong:Shandong University, 2012.(in Chinese)
0
浏览量
461
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构