浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学, 北京 100049,中国
收稿日期:2015-02-09,
修回日期:2015-04-07,
纸质出版日期:2016-02-25
移动端阅览
张雷, 王延杰, 孙宏海等. 采用核相关滤波器的自适应尺度目标跟踪[J]. 光学精密工程, 2016,24(2): 448-459
ZHANG Lei, WANG Yan-jie, SUN Hong-hai etc. Adaptive scale object tracking with kernelized correlation filters[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 448-459
张雷, 王延杰, 孙宏海等. 采用核相关滤波器的自适应尺度目标跟踪[J]. 光学精密工程, 2016,24(2): 448-459 DOI: 10.3788/OPE.20162402.0448.
ZHANG Lei, WANG Yan-jie, SUN Hong-hai etc. Adaptive scale object tracking with kernelized correlation filters[J]. Editorial Office of Optics and Precision Engineering, 2016,24(2): 448-459 DOI: 10.3788/OPE.20162402.0448.
由于现存的大多数基于检测的跟踪器都没有解决尺度变化问题
本文在传统的基于检测的目标跟踪框架下设计了一种尺度估计策略
并给出了基于核相关滤波器的自适应尺度目标跟踪算法。该算法利用核函数对正则化最小二乘分类器求解获得核相关滤波器
通过对核相关滤波器的在线学习完成目标位置和尺度的检测
并在线更新核相关滤波器。为了验证本文算法的有效性
选取了10组场景复杂的视频序列进行测试
并与其它5种优秀跟踪方法进行了对比。结果表明
本文提出的方法比上述5种优秀跟踪方法中的最优者的平均距离精度提高了6.9%
且在目标发生尺度变化、光照变化、部分遮挡、姿态变化、旋转、快速运动等复杂场景下有较强的鲁棒性。
As most of tracking-by-detection methods have not dealt with the scale estimation problem in target tracking
this paper proposes a scale estimation strategy based on the tracking-by-detection framework. Meanwhile
it designs an adaptive scale tracking algorithm based on kernelized correlation filters. The algorithm uses a kernel function to solve the regularized least square classifier to obtain the kernelized correlation filters. Then it completes the target position and scale detection by online learning the kernelized correlation filters
and updates the filters in online. To verify the feasibility of the proposed algortihm
ten groups of benchmark video sequences are tested and obtained results are compared with those of five kinds of tracking algorithms. The experimental results show that the proposed approach improves the performance by 6.9% in the average distance precision as compared to the best one of the other five excellent existing tracking algorithms. It is robust to scale changing
illumination variation
partial occlusion
pose variation
rotation
fast motion and other complex scenes.
YILMAZ A, JAVED O, SHAH M. Object tracking:a survey[J]. ACM Computing Surveys, 2006, 38(4):1-45.
李静宇,王延杰. 基于子空间的目标跟踪算法研究[J]. 液晶与显示, 2014, 29(4):617-622. LI J Y, WANG Y J. Subspace based target tracking algorithm[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(4):617-622.(in Chinese)
陈东成,朱明,高文,等. 在线加权多示例学习实时目标跟踪[J]. 光学精密工程,2014,22(6):1661-1667. CHEN D CH, ZHU M, GAO W, et al.. Real-time object tracking via online weighted multiple instance learning[J]. Opt. Precision Eng., 2014, 22(6):1661-1667.(in Chinese)
宋策,张葆,尹传历. 适于机载环境对地目标跟踪的粒子滤波设计[J]. 光学精密工程,2014,22(4):1037-1047. SONG C, ZHANG B, YIN CH L. Particle filter design for tracking ground targets in airborne environment[J]. Opt. Precision Eng., 2014, 22(4):1037-1047.(in Chinese)
张雷,王延杰,何舒文. 基于相位一致性的实时压缩跟踪方法[J]. 光子学报,2014,43(8):0810003. ZHANG L, WANG Y J, HE SH W.Real-time compressive tracking method based on phase congruency[J]. Acta Photonica Sinica, 2014, 43(8):0810003.(in Chinese)
JEPSON A, FLEET D, EL-MARAGHI T. Robust online appearance models for visual tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003, 25(10):1296-1311.
ADAM A, RIVLIN E and SHIMSHONI I. Robust fragments-based tracking using the integral histogram[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2006:798-805.
ROSS D, LIM J, LIN R, et al.. Incremental learning for robust visual tracking[J]. International Journal of Computer Vision, 2008, 77(1-3):125-141.
BOLME D S, BEVERIDGE J R, DRAPER B A, et al.. Visual object tracking using adaptive correlation filters[C]. 23rd IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2010,13-18.
KALAL Z, MIKOLAJCZYK K, MATAS J. Tracking-learning-detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 43(7):1409-1422.
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. Exploiting the circulant structure of tracking-by-detection with kernels[C].European Conference on Computer Vision, 2012:702-715.
DANELLJAN M, KHAN F S, FELSBERG M. Adaptive color attributes for real-time visual tracking[C]. 27th IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2014:23-28.
ZHANG K H, ZHANG L,YANG M H.Fast compressive tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014,36(10):2002-2015.
郭敬明,何昕,魏仲慧. 基于在线支持向量机的Mean Shift彩色图像跟踪[J]. 液晶与显示, 2014, 29(1):120-128. GUO J M, HE X,WEI ZH H. New Mean Shift tracking for color image based on online support vector machine[J].Chinese Journal of Liquid Crystals and Displays, 2014, 29(1):120-128.(in Chinese)
HENRIQUES J F, CASEIRO R, MARTINS P, et al.. High speed tracking with kernelized correlation filters[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 37(3):583-596.
孙晓燕,常发亮. 梯度特征稀疏表示目标跟踪[J]. 光学精密工程,2013,21(12):3191-3197. SUN X Y,CHANG F L. Object tracking based on sparse respresentation of gradient feature[J]. Opt. Precision Eng., 2013, 21(12):3191-3197.(in Chinese)
朱秋平,颜佳,张虎,等. 基于压缩感知的多特征实时跟踪[J]. 光学精密工程,2013,21(2):437-444. ZHU Q P, YAN J, ZHANG H, et al.. Real-time tracking using multiple features based on compressive sensing[J]. Opt. Precision Eng., 2013, 21(2):437-444.(in Chinese)
WU Y, LIM J, YANG M-H. Online object tracking:a benchmark[J]. IEEE Conference on Computer Vision and Pattern Recognition, 2013:2411-2418.
GRAY R M.Toeplitz and Circulant Matrices:A Review[M]. Boston:Now Publishers Inc, 2006.
RIFKIN R, YEO G, POGGIO T. Regularized least-squares classification[J]. Nato Science Series Sub Series Ⅲ:Computer and Systems Sciences, 2003, 190:131-154.
SCHÕLKOPF B, SMOLA A J. Learning with Kernels:Support Vector Machines, Regularization, Optimization, and Beyond[M]. London:The MIT Press, 2002.
DANELL J M, HAGERG, KHAN F S,et al.. Accurate scale estimation for robust visual tracking[J]. British Machine Vision Conference, 2014.
ZHANG K H, SONG H H. Real-time visual tracking via online weighted multiple instance learning[J]. Pattern Recognition, 2013, 46(1):397-411.
ZHANG K H, ZHANG L, YANG M H. Real-Time compressive tracking[J]. European Conference on Computer Vision, 2012, 7574:864-877.
EVERINGHAM M, GOOL L, WILLIAMS C, et al.. The Pascal Visual Object Classes(VOC) challenge[J]. International Journal of Computer Vision, 2010, 88(2):303-338.
BABENKO B, YANG M-H, BELONGIE S. Robust object tracking with online multiple instance learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(8):1619-1632.
0
浏览量
409
下载量
31
CSCD
关联资源
相关文章
相关作者
相关机构