浏览全部资源
扫码关注微信
1. 中国科学院大学 北京,中国,100049
2. 中国科学院 光电技术研究所,四川 成都,610209
3. 电子科技大学,四川 成都,610054
收稿日期:2015-11-25,
修回日期:2016-01-05,
纸质出版日期:2016-03-25
移动端阅览
刘志祥, 邢廷文, 蒋亚东等. 大数值孔径物镜的波像差测量及其特殊问题[J]. 光学精密工程, 2016,24(3): 482-490
LIU Zhi-xiang, XING Ting-wen, JIANG Ya-dong etc. Measurement of wavefront aberration for high NA objective and some special problems[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 482-490
刘志祥, 邢廷文, 蒋亚东等. 大数值孔径物镜的波像差测量及其特殊问题[J]. 光学精密工程, 2016,24(3): 482-490 DOI: 10.3788/OPE.20162403.0482.
LIU Zhi-xiang, XING Ting-wen, JIANG Ya-dong etc. Measurement of wavefront aberration for high NA objective and some special problems[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 482-490 DOI: 10.3788/OPE.20162403.0482.
设计了基于振幅型棋盘光栅的二维剪切干涉仪
用于测量大数值孔径(NA)物镜的波像差。研究了棋盘光栅剪切干涉仪的基本原理
分析了大数值孔径物镜波像差测量时涉及的几个特殊问题。首先
根据棋盘光栅的远场衍射函数分析了棋盘光栅的衍射效率和衍射级分布
给出了剪切干涉图数据的处理方法。接着
根据球面光瞳坐标与平面探测器坐标的投影关系
分析了光瞳坐标畸变的影响;采用几何光线追迹方法
分析了光栅方程非线性对系统误差的影响。最后
推导了物镜光瞳边缘的相对照度与数值孔径的关系。试验结果表明:采用相同光瞳坐标
NA为0.6的显微物镜的波像差测量重复性(3σ)可达到3.7 mλ。对大数值孔径物镜测量过程中涉及的特殊问题进行了探讨
结果提示:测量大数值孔径物镜的波像差时
需要考虑光瞳坐标畸变、光栅方程引入的系统误差、光瞳边缘照度衰减的影响等。
A two-dimension shearing interferometer based on an amplitude chessboard grating was designed to measure the wavefront aberration of a high Numerical Aperture(NA) objective. The principle of Chessboard Grating Lateral Shearing Interferometer(CBGLSI) was researched
and several special problems involved in the measurement of wavefront aberration for the high NA objective were investigated. Firstly
the diffraction efficiencies and diffraction order distribution of the chessboard grating were analyzed by the far-field diffraction function
and the processing method of shearing interferogram was given. According to the projection relation between the spherical pupil coordinates and plane detector coordinates
the influence of pupil coordinates distortion was analyzed. Then
the effect of the nonlinearity of grating formula on systematic errors was analyzed by geometrical ray tracing method. Finally
the relation between the relative irradiance at the objective pupil edge and the numerical aperture was deduced. Experimental results indicate that the measuring repeatability(3σ) of wavefront aberration of a objective with the NA of 0.6 is 3.7 mλ under the same pupil coordinate. Several special problems involved in the measurement of wavefront aberration was discussed
and the results suggest that the influences of pupil coordinate distortion
systematic error due to grating formula
and the irradiance attenuation at pupil edge should be considered when the wavefront aberration of the high NA objective is measured.
刘克, 李艳秋. 极紫外光刻投影物镜波像差在线检测技术[J]. 中国激光, 2009, 36:257-262. LIU K, LI Y Q. At-wavelength interferometry of projection optics for extreme ultraviolet lithography[J]. Chinese Journal of Lasers, 2009, 36:257-262.(in Chinese)
GOLDBERG K, TEJNIL E. Characterization of an EUV Schwarzschild objective using phase-shifting point diffraction interferometry[J]. SPIE, 1997, 3048:264-270.
OHSAKI Y, MORI T. A new on-machine measurement system to measure wavefront aberrations of projection optics with high-NA[J]. SPIE, 2006, 6154:615424-1-615424-10.
FUJⅡ T, KOUGO J. Portable phase measuring interferometer using Shack-Hartmann method[J]. SPIE, 2003, 5038:726-732.
PRIMOT J, GUÉRINEAU N. Extended Hartmann test based on the pseudoguiding property of a Hartmann mask completed by a phase chessboard[J]. Applied Optics, 2000, 39(31):5715-5720.
LING T, LIU D. Quadriwave lateral shearing interferometer based on a randomly encoded hybrid grating[J]. Optics Letters, 2015, 40(10):2245-2247.
NAULLEAU P P, GOLDBERG K A. Extreme ultraviolet carrier-frequency shearing interferometry of a lithographic four-mirror optical system[J]. J. Vac. Sci. Technol. B, 2000, 18(6):2939-2943.
KATO S, OUCHI C. Comparison of EUV interferometry methods in EUVA project[J]. SPIE, 2005, 5751:110-117.
KERKHOF M, BOEIJ W. Full optical column characterization of DUV lithographic projection tool[J]. SPIE, 2004, 5377:1960-1970.
HAIDNER H, EMER W. Device and method for wavefront measurement of an optical imaging system by means of phase-shifting interferometry:US patent, US2005/0007602[P].2005.
LIU Z X, XING T W. Two-dimension lateral shearing interferometry for microscope objective wavefront metrology[J]. SPIE, 2014, 9272:92721B-1-92721B-8.
WANG H, LI Y Q. Approach to characterize manufacture tolerances of two-dimensional cross-phase grating[J]. Optical Engineering, 2013, 52(10):104101-1-104101-9.
何煦, 向阳. 数字横向剪切干涉仪相移技术[J]. 光学精密工程, 2013, 21(9):2245-2251.HE X, XIANG Y. Phase-shifting technology of digital lateral shearing interferometer[J]. Opt. Precision Eng., 2013, 21(9):2245-2251.(in Chinese)
李杰, 唐锋, 王向朝. 光栅横向剪切干涉仪及其系统误差分析[J]. 中国激光, 2014, 41(5):0508006-1-0508006-10.LI J, TANG F, WANG X CH, et al.. System errors analysis of grating lateral shearing interferometer[J]. Chinese Journal of Lasers, 2014, 41(5):0508006-1-0508006-10.(in Chinese)
LIU Y W, ZHU X L. Quasi suppression of higher order diffractions with inclined rectangular apertures gratings[J]. Scientific Reports, 2015, 5:16502.
MIYAKAWA R, NAULLEAU P. Lateral shearing interferometry for high-resolution EUV optical testing[J]. SPIE, 2011, 7969:796939-1-796939-6.
0
浏览量
75
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构