浏览全部资源
扫码关注微信
1. 中国科学院大学, 北京 100049,中国
2. 中国科学院 上海微系统与信息技术研究所 新能源技术中心, 上海 201800
3. 日本产业技术综合研究所 太阳光发电研究中心, 日本 筑波 305-8568
收稿日期:2015-11-20,
修回日期:2016-01-05,
纸质出版日期:2016-03-25
移动端阅览
卞洁玉, 猪狩真一, 周泓等. 封装标准太阳电池性能及其与国际标准一致性的评价[J]. 光学精密工程, 2016,24(3): 491-501
BIAN Jie-yu, IGARI Sanekazu, ZHOU Hong etc. Characteristics of various packaged reference photovoltaic devices and their conformities to international photovoltaic standards[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 491-501
卞洁玉, 猪狩真一, 周泓等. 封装标准太阳电池性能及其与国际标准一致性的评价[J]. 光学精密工程, 2016,24(3): 491-501 DOI: 10.3788/OPE.20162403.0491.
BIAN Jie-yu, IGARI Sanekazu, ZHOU Hong etc. Characteristics of various packaged reference photovoltaic devices and their conformities to international photovoltaic standards[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 491-501 DOI: 10.3788/OPE.20162403.0491.
基于国际电工委员会(IEC)国际标准分析了引起标准太阳电池量值传递误差的因素及其与国际标准的一致性。随机选取我国市场上销售的6种封装标准太阳电池
测量了它们的温度特性、光谱响应特性和表面反射特性。结果表明:电池的封装结构影响它们的冷却效果及温度的正确测量
从而导致温度和短路电流的不稳定性
其变异系数最高可达0.12%和0.04%。另外
有、无偏置光条件下的光谱响应特性均反映其光电流的光照强度线性特性
这里定义用光谱拟合度来衡量各封装太阳电池的光谱响应特性。采用改变入射角测量短路电流的方法分析了表面光反射对短路电流的影响
利用余弦函数拟合确定了由表面反射光所引起的短路电流的误差可达0.21%。本文的研究成果对光伏行业正确制造、选择和使用标准太阳电池具有指导作用。
This paper focuses on analysis of the origins of measuring transfer errors of standard solar cells and the uncertainty to international photovoltaic standards from the International Electrotechnical Commission(IEC). Six kinds of commercial packaged PV devices were chosen randomly
and their properties including temperature responsibility
spectral response and surface reflection effect were measured and evaluated based on the IEC standards
The results demonstrate that the structure of packaged PV device affects its cooling effect and temperature measurement accuracy
so that to leads to the instability of temperature and short-circuit current(I
sc
). The variation coefficients are 0.12% for the temperature and 0.04% for the I
sc
. Moreover
the spectral responses with and without white bias lights all reflect the linearity feature of incident light intensity for the I
sc
in which the spectral responses were quantified by defining a spectral mismatch factor. The influence of surface reflection on I
sc
was analyzed by measuring I
sc
at different incident angles
and the ΔI
sc
caused by the surface reflection was deduced to be up to 0.21% by fitting with a cosine function. The results provide the important guidance for the manufacture
selection and application of the packaged PV devices in photovoltaic industry.
IEC 60904-1:Photovoltaic devices-Part 1:Measurement of photovoltaic current-voltage characteristics[S]. Switzerland:International Electrotechnical Commission, 2006.
IEC 60904-3:Photovoltaic devices-Part 3:Measurement principles for terrestrial photovoltaic(PV) solar devices with reference spectral irradiance data[S]. Switzerland:International Electrotechnical Commission, 2008.
GB/T 6495.1:光伏器件第一部分:光伏电流-电压特性的测量[S]. 北京:国家技术监督局,1996. GB/T 6495.1:Photovoltaic devices-Part 1:Measurement of photovoltaic current-voltage characteristics[S]. Beijing:General Administration of Quality Supervision, Inspection and Quarantine, 1996.(in Chinese)
GB/T 6495.3:光伏器件第三部分:地面用光伏器件的测量原理及标准光谱辐照度数据[S]. 北京:国家技术监督局,1996. GB/T 6495.3:Photovoltaic devices-Part 3:Measurement principles for terrestrial photovoltaic(PV) solar devices with reference spectral irradiance data[S]. Beijing:General Administration of Quality Supervision, Inspection and Quarantine, 1996.(in Chinese)
ISO 21348:Space environment(natural and artificial)-Process for determining solar irradiances[S]. Switzerland:International Organization for Standardization, 2007.
EMERY K A. Solar simulators and I-V measurement methods[J]. Solar Cells, 1986, 18(3-4):251-260.
GREULICH J, GLATTHAAR M, REIN S. Fill factor analysis of solar cells' current-voltage curves[J]. Progress in Photovoltaics:Research and Applications, 2010, 18(7):551-515.
王志明, 龚振邦, 魏光谱, 等. 用于太阳电池测试的太阳模拟技术[J]. 光学精密工程, 2009, 17(7):1542-1547. WANG ZH M, GONG ZH B, WEI G P, et al.. Solar simulation technique for solar cell measurement[J]. Opt. Precision Eng., 2009, 17(7):1542-1547.(in Chinese)
周春兰, 王文静, 李海玲, 等. 用电学参数表征晶体硅太阳电池特性[J]. 光学精密工程, 2008, 16(7):1163-1170. ZHOU CH L, WANG W J, LI H L, et al.. Characterization of crystalline silicon solar cells by electrical parameters[J]. Opt. Precision Eng., 2008, 16(7):1163-1170.(in Chinese)
蔡建文, 李萍萍, 徐传明, 等. 太阳电池测试系统及其参数匹配优化研究[J]. 光学精密工程, 2007, 15(4):517-521.CAI J W, LI P P, XU CH M, et al..Study on solar cell testing system and its parameter matching optimization[J]. Opt. Precision Eng., 2007, 15(4):517-521.(in Chinese)
IEC 60904-4:Photovoltaic devices-Part 4:Reference solar devices-Procedures for establishing calibration traceability[S]. Switzerland:International Electrotechnical Commission, 2009.
OSTERWALD C R, ANEVSKY S, BUCHER K, et al.. The world photovoltaic scale:an international reference cell calibration program[J]. Progress in Photovoltaics:Research and Applications, 1999, 7(4):287-297.
IEC 60904-2:Photovoltaic devices-Part 2:requirement for reference solar devices[S]. Switzerland:International Electrotechnical Commission, 2015.
IEC 60904-8:Photovoltaic devices-Measurement of spectral response of a photovoltaic(PV) device[S]. Switzerland:International Electrotechnical Commission, 2014.
IEC 60904-10:Photovoltaic devices-Methods of linearity measurement[S]. Switzerland:International Electrotechnical Commission, 2009.
AHN S, IGARI S. Establishment of a primary reference solar cell calibration technique in Korea:methods, results and comparison with WPVS qualified laboratories[J]. Metrologia, 2014, 51(3):139-147.
SHIMOKAWA R, MIYAKE Y, NAKANISHI Y. Possible errors due to deviation from the cosine response in the reference cell calibration under global irradiance[J]. Japanese Journal of Applied Physics, 1986, 25(2):L102-L104.
SHIMOKAWA R, NAGAMINE F, HAYASHI Y. Photon collection enhancement by white rear cover reflection and the design of reference cells for module performance measurement[J]. Japanese Journal of Applied Physics, 1986, 25(3):L165-L167.
BALENZATEGUI J L, CHENLO F. Measurement and analysis of angular response of bare and encapsulated silicon solar cells[J]. Solar Energy Materials and Solar Cells, 2005, 86(1):53-83.
0
浏览量
91
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构