浏览全部资源
扫码关注微信
大连海事大学 轮机工程学院,辽宁 大连,116026
收稿日期:2015-09-10,
修回日期:2015-10-15,
纸质出版日期:2016-03-25
移动端阅览
刘恩辰, 张洪朋, 吴瑜等. 油液过流速度对船舶液压油检测精度的影响[J]. 光学精密工程, 2016,24(3): 533-539
LIU En-chen, ZHANG Hong-peng*, WU Yu etc. Effect of oil velocity on sensitivity of micron metal particle detection by inductive sensor[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 533-539
刘恩辰, 张洪朋, 吴瑜等. 油液过流速度对船舶液压油检测精度的影响[J]. 光学精密工程, 2016,24(3): 533-539 DOI: 10.3788/OPE.20162403.0533.
LIU En-chen, ZHANG Hong-peng*, WU Yu etc. Effect of oil velocity on sensitivity of micron metal particle detection by inductive sensor[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 533-539 DOI: 10.3788/OPE.20162403.0533.
为提高平面电感式微流控检测芯片的检测精度
研究了油样过流速度与信号幅值大小的关系。介绍了电感式微流控检测芯片的检测原理
理论分析了油样过流速度对检测信号幅值产生的影响并进行了公式推导
然后采用控制变量法对其进行了实验验证。选用粒径在80-85μm之间的铁颗粒作为待测颗粒
将油样的过流速度分别设定为0.02-0.10 ml/min进行了实验。结果表明
随着油样过流速度的增加
信号幅值逐渐减小
且呈线性关系;在其余因素不变
仅改变油样的过流速度时
检测信号的幅值最大可增大87.5%。研究表明
实验结果与理论推导结论相符
通过减小油样的过流速度可增大检测信号的幅值。该项研究对提高平面电感式微流控检测芯片的精度具有参考价值。
To improve the sensitivity of a planar inductive microfluidic chip
the relationship between the oil velocity and the signal amplitude was researched. The working principle of the planar inductive microfluidic chip was introduced
the effect of the oil velocity on the detection signal amplitude was analyzed theoretically and the related formula were derived. Then
the experimental verification was performed by the control variable method. The iron particles with diameters from 80-85μm were used as the samples
the velocity of oil was set from 0.02 ml/min to 0.10 ml/min
an experiment was carried out. The obtained data illustrate that the signal amplitude decreases with the improvement of oil velocity
and the relationship between the oil velocity and signal amplitude is linear after fitting. When other conditions are invariant
the sensitivity has been significantly improved with the velocity decreased
and the maximum can catch about 87.5%.It suggests that the experiment data agree with the theoretical ones well and the signal amplitude can be improved by decreasing the oil velocity. The conclusion is valuable for the sensitivity improvement of microfluidic chips.
张兴明, 张洪朋, 陈海泉, 等. 微流体油液检测芯片分辨率-频率特性研究[J]. 仪器仪表学报. 2014(02):427-433. ZHANG X M, ZHANG H P, CHEN H Q, et al.. Study on the resolution-frequency characteristic of microfluidic oil detection chip[J]. Chinese Journal of Scientific Instrument, 2014(02):427-433.(in Chinese)
范红波, 张英堂, 任国全, 等. 新型磨粒在线监测传感器及其试验研究[J]. 摩擦学学报. 2010(04):338-343. FAN H B, ZHANG Y T, REN G Q, et al.. Experimental study of an on-line monitoring sensor for wear particles in oil[J]. Tribology, 2010(04):338-343.(in Chinese)
ZHANG X M, ZHANG H P, SUN Y Q, et al.. Effects of eddy crrent within particles on the 3D solenoid microfluidic detection chip[J]. Applied Mechanics and Materials, 2013, 385:546-549.
ZHANG H P, HUANG W, ZHANG Y D, et al. Design of the microfluidic chip of oil detection[J]. Applied Mechanics and Materials, 2012, 117:517-520.
严宏志, 张亦军. 一种磨粒在线监测传感器的设计及其特性分析[J]. 传感技术学报, 2002(4):333-338. YAN H Z, ZHANG Y J. The design of an on-line monitoring sensor of wear mental particle and the analysis of its Characteristic[J]. Chinese Journal of Sensors and Actuators, 2002(4):333-338.(in Chinese)
DU L, ZHU X, HAN Y, et al.. High throughput wear debris detection in lubricants using a resonance frequency division multiplexed sensor[J]. Tribology Letters, 2013, 51(3):453-460.
ZHANG H, CHON C H, PAN X, et al.. Methods for counting particles in microfluidic applications[J]. Microfluidics and Nanofluidics, 2009, 7(6):739-749.
徐涛, 高玉成, 武星. 对于光阻法在对小粒径微粒检测时的原理分析[J]. 仪器仪表学报, 2005, 01:13-16+22. XU T,GAO Y C,WU X. Analysis of light-blockage principle in smal l particle size measurement[J]. Chinese Journal of Scientific Instrument, 2005, 01:13-16+22.(in Chinese)
DU L, ZHE J. A high throughput inductive pulse sensor for online oil debris monitoring[J]. Tribology International, 2011, 44(2):175-179.
ZHU X, DU L, ZHE J. An integrated lubricant oil conditioning sensor using signal multiplexing[J]. Journal of Micromechanics and Microengineering, 2015, 25(1):015006.
苑伟政, 焦文龙, 常洪龙. 微流控的系统级设计[J]. 光学精密工程, 2013, 21(12):3141-3151. FAN W ZH, JIAO W L, CHANG H L. System level design of microfluidics[J]. Chinese Journal of Optical and Precision Engineering, 2013, 21(12):3141-3151.(in Chinese)
徐征, 王继章, 杨铎, 等. 辅助溶剂对PMMA微流控芯片模内键合的影响[J]. 光学精密工程, 2012, 20(2):321-328. XU ZH, WANG J ZH, YANG D, et al.. Effect of assistant solvent on in-mold bonding of PMMA microfluidic chips[J]. Chinese Journal of Optical and Precision Engineering, 2012, 20(2):321-328.(in Chinese)
张洪朋, 张兴明, 郭力, 等. 微流体油液检测芯片设计[J]. 仪器仪表学报, 2013:762-767. ZHANG H P, ZHANG X M, GUO L, et al.. Design of the oil detection microfluidic chip[J]. Chinese Journal of Scientific Instrument, 2013(04):762-767.(in Chinese)
郭力. 微流体油液检测芯片的优化及信号分析[D]. 大连:大连海事大学, 2013. GUO L. Optimization and signal analysis of microfluidic oil detection chip[D]. Dalian:Dalian Maritime University, 2013.(in Chinese)
谢处方, 饶克谨. 电磁场与电磁波[M]. 高等教育出版社, 2006 XIE CH F, RAO K J. Electromagnetic Fields and Magnetic Waves[M]. Higher Education Press, 2006
张春花. 基于微流体芯片的液压油金属颗粒检测研究[D]. 大连海事大学, 2012. ZHANG CH H. Study on the metal particle detection in hydraulic oil based on microfluidic chip[D]. Dalian:Dalian Maritime University, 2012.(in Chinese)
0
浏览量
809
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构