浏览全部资源
扫码关注微信
大连理工大学 机械工程学院, 辽宁 大连 116023
收稿日期:2015-08-20,
修回日期:2015-09-15,
纸质出版日期:2016-03-25
移动端阅览
褚金奎, 李双亮, 张然. SU-8胶光弹性性能显微测试[J]. 光学精密工程, 2016,24(3): 547-552
CHU Jin-kui, LI Shuang-liang, ZHANG Ran. Micro-measurement of SU-8 photoelastic performance[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 547-552
褚金奎, 李双亮, 张然. SU-8胶光弹性性能显微测试[J]. 光学精密工程, 2016,24(3): 547-552 DOI: 10.3788/OPE.20162403.0547.
CHU Jin-kui, LI Shuang-liang, ZHANG Ran. Micro-measurement of SU-8 photoelastic performance[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 547-552 DOI: 10.3788/OPE.20162403.0547.
考虑获知SU-8胶的光弹性性能有利于拓展其在微纳米领域中的应用范围
本文设计了材料应力光学系数显微测量光路
完成了SU-8胶应力光学系数的测量实验。首先
基于光弹性原理设计了测量光路
推导了求解应力光学系数的计算公式;然后
根据所设计的光路搭建了应力光学系数显微测量实验装置
在SU-8胶试样光弹性条纹的单个半级数范围内进行了单向拉伸实验;最后
利用Matlab提取实验照片组中光强值信息
得到了不同拉力下透过SU-8胶试样的单色光光强值
计算求解出了SU-8胶的应力光学系数。实验结果以及测量公式计算显示
SU-8胶的应力光学系数为(3.007±0.149)×10
-11
m
2
/N
大于光学玻璃等材料的应力光学系数
也远大于二氧化硅等MEMS领域常用材料的应力光学系数。实验结果可为以SU-8胶为材料
通过光弹性原理进行微力测量的微探针、微夹钳等的设计与制作打下基础。
The photoelastic performance of SU-8 photoresist is related to extending its applications to the field of MEMS(Micro-electronic-mechanical System). Therefore
this paper designs a micro-measuring path to obtain the stress-optical coefficient of the SU-8
and implements the measurement experiment of SU-8 photoelastic performance. Firstly
based on the photoelastic mechanism
the micro-measuring optical path was designed and the formulas for the calculation of SU-8 stress-optical coefficient were deduced. Then
the experiment devices for photoelastic microscopic measurement were built according to the designed optical path
and the tensile test of SU-8 specimen was conducted in the scope of the half order of a single photoelastic fringe. Finally
through extracting the values of the light intensity from the experimental photographs by Matlab
the light intensity of monochromatic light penetrated throught the SU-8 specimen under different tensile forces were measured and the value of SU-8 stress-optical coefficient was calculated. The experimental results and the calculation of measurement formulas show that the stress-optical coefficient of SU-8 is(3.007±0.149)×10
-11
m
2
/N
greater than that of normal optical glass and other materials commonly used in MEMS fields
such as silica. The experimental results can lay a foundation for the design and manufacturing of micro-grippers and micro-probes made from the SU-8 materials and used for the force measurement through photoelastic mechanisms.
CELIK G, ULUDAG B. Photoelastic stress analysis of various retention mechanisms on 3-implant-retained mandibular overdentures[J]. The Journal of prosthetic dentistry, 2007, 97(4):229-235.
李志诚, 唐志列, 陈萍, 等. 基于斯托克斯参量的光弹性应力分布及成像方法研究[J]. 光学学报, 2012, 32(5):93-97.LI ZH CH, TANG ZH L, CHEN P, et al.. Study of Photoelastic Stress Distribution and imaging method based on stokes parameters[J]. Acta Optica Sinica, 2012, 32(5):93-97.(in Chinese)
方如华, 杨国标. 动光弹性法中若干问题的近期研究进展[J]. 实验力学, 2011, 26(5):491-502.FANG R H, YANG G B. Resent development of some issues in dynamic photoelastic method[J]. Journal of Experimental Mechanics, 2011, 26(5):491-502.(in Chinese)
BREWSTER D. Experiments on the depolarisation of light as exhibited by various mineral, animal, and vegetable bodies, with a reference of the phenomena to the general principles of polarization[J]. Philosophical Transactions of the Royal Society of London, 1815, 105:29-53.
刘景全, 蔡炳初, 陈迪, 等. SU-8胶及其在MEMS中的应用[J]. 微纳电子技术, 2003(8):132-136.LIU J Q, CAI B CH, CHEN D, et al.. SU-8 photoresist and its application in MEMS[J]. Micronanoelectronic Technology, 2003(8):132-136.(in Chinese)
KOMATI B, AGNUS J, CLEVY C, et al.. Prototyping of a highly performant and integrated piezoresistive force sensor formicroscale applications[J]. Journal of Micromechanics and Microengineering, 2014, 24(3):035018.
褚金奎, 陈兆鹏, 张然. 集成铜金属压阻层的SU-8胶悬臂梁微力传感器的制作[J]. 光学精密工程, 2012, 19(12):2935-2940.CHU J K, CHEN Z P, ZHANG R. Microfabrication of SU-8 cantilever micro-force sensor integrated by copper piezoresistance[J]. Optics and Precision Engineering, 2012, 19(12):2935-2940.(in Chinese)
张培玉, 武国英. 微夹钳研究的进展与展望[J]. 光学精密工程, 2000, 8(3):292-296.ZHANG Y P, WU G Y. Development of microgripper technology[J]. Optics and Precision Engineering, 2000, 8(3):292-296.(in Chinese)
李路明, 任延同, 王立鼎, 等. 微夹钳技术发展现状及应用研究[J]. 光学精密工程, 1997, 4.LI L M, REN Y T, WANG L D, et al.. Development of Microgripper Technique[J]. Optics and Precision Engineering, 1997, 4.(in Chinese)
兰惠. 用径向加压法测定玻璃应力光学常数[J]. 光学精密工程, 1986, 3:007.LAN H. Measurement of Stress-optical Coefficient of Glasses by Radial Compression Method[J]. Optics and Precision Engineering, 1986, 3:007.(in Chinese)
AZZAM R M A. Arrangement of four photodetectors for measuring the state of polarization of light[J]. Optics Letters, 1985, 10(7):309-311.
CHU J K, GAO J L, GUAN L, et al.. Mechanical characterization of SU-8 thin films through varying effective aspect ratios for microelectromechanical systems application[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2012, 11(2):023006.
0
浏览量
107
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构