浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
收稿日期:2015-04-20,
修回日期:2015-07-21,
纸质出版日期:2016-03-25
移动端阅览
吴小霞, 郝亮, 邵亮等. 弯月薄镜的侧向支撑[J]. 光学精密工程, 2016,24(3): 553-559
WU Xiao-xia*, HAO Liang, SHAO Liang etc. Lateral support of thin meniscus mirror[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 553-559
吴小霞, 郝亮, 邵亮等. 弯月薄镜的侧向支撑[J]. 光学精密工程, 2016,24(3): 553-559 DOI: 10.3788/OPE.20162403.0553.
WU Xiao-xia*, HAO Liang, SHAO Liang etc. Lateral support of thin meniscus mirror[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 553-559 DOI: 10.3788/OPE.20162403.0553.
弯月薄镜在侧向均匀承重和弯月薄镜在采用侧向均匀承重和等间距竖直推拉侧向支撑方式时
等间距竖直推拉侧向支撑方式时
会产生明显的弯曲变形问题。为消除附加弯矩带来的镜面变形
本文分析了弯月薄镜的结构特点
提出了适用于弯月薄镜的等角间距推-拉-剪切和不等角间距推-拉-剪切两种侧向支撑方式。通过在侧向支撑上增加轴向剪切平衡作用力分量
推导了在上述两种侧向支撑方式下各向作用力分量的表达式。针对1.23 m弯月薄镜
优化出切向分量最佳比率为0.75。对16点等间距侧向支撑增加轴向剪切分量后
镜面变形RMS值由1259.1 nm减小到3.4 nm
无需轴向主动校正即可获得较好的支撑面形。不等角间距侧向支撑方式则解决了等间距侧向支撑方式中各个侧向支撑点的作用力大小差异较大的问题
结合弯月薄镜轴向支撑的主动校正能力
在最大校正力仅为-1.01 N的主动校正后
16点不等间距侧向支撑实现了镜面变形RMS为4.6 nm的支撑效果。
Thin meniscus mirrors with a lateral support in either equal weight vertical support or equal-angle vertical push-pull always generate bending aberrations badly. To eliminate the bending deformations
this paper analyzes the structure characteristics of the thin meniscus mirrors and proposes two kinds of lateral support models including equal-angle push-pull shear and unequal-angle push-pull shear for the thin meniscus mirrors. By increasing the axial forces on lateral supports to balance the force components
the tangential force
radial force and axial force of the lateral support are expressed for both lateral support modes. The parameters of a 1.23 m thin meniscus mirror are optimized
and the results show that the parameter (determines the contribution of tangential forces to weight support) of a 16-point lateral support system is 0.75. After applying axial shear component to the 16-point equal-angle push-pull lateral support
the mirror deformation(RMS) is reduced from 1259.1 nm to 3.4 nm
showing a better support surface. The equal-angle push-pull shear lateral support mode is successful in reducing deformation without active correction
but it has a major disadvantage in a great force difference between lateral support points. Considering uniformity and practicality for lateral support mechanism
the 16-point unequal-angle push-pull shear lateral support mode is used to achieve 4.6 nm deformation(RMS) with axial active correcting by the maximum active force of only-1.01 N.
吴小霞, 杨洪波, 张景旭, 等. 大口径球面镜支撑系统的优化设计[J]. 光子学报, 2009, 38(1):129-132.WU X X, YANG H B, ZHANG J X, et al.. Optimal Design of support system for the large-aperture sphere mirror[J]. Acta Photonica Sinica, 2009, 38(1):129-132.
范磊, 张景旭, 吴小霞, 等. 大口径轻量化主镜边缘侧向支撑的优化设计[J]. 光学精密工程, 2012, 20(10):2207-2213.FAN L, ZHANG J X, WU X X, et al.. Optimum design of edge-lateral support for large-aperture lightweight primary mirror[J]. Opt. Precision Eng., 2012, 20(10):2207-2213.(in Chinese)
伞晓刚, 孙宁, 卓仁善, 等. 大口径光电经纬仪主反射镜支撑结构设计[J]. 光学精密工程, 2013, 21(12):3111-3117.SAN X G, SUN N, ZHAO R SH, et al.. Design of supporting structure for primary mirror of large aperture theodolite[J]. Opt. Precision Eng., 2013, 21(12):3111-3117.
PAUL R. YODER. Opto-mechanical systems design[M]. Third edition, Bellingham, Washington USA, SPIE press, 2005. 527-539.
徐宏, 关英俊. 空间相机1 m口径反射镜组件结构设计[J]. 光学精密工程, 2013, 21(6):1488-1495.XU H, GUAN Y J. Structural design of 1m diameter space mirror component of space camera[J]. Opt. Precision Eng., 2013, 21(6):1488-1495.(in Chinese)
张玉芳, 李国平. 用于薄镜面主动光学的音圈力促动器设计[J]. 光学精密工程, 2013, 21(11):2836-2842.ZHANG Y F, LI G P. Design of voice coil force actuator in thin mirror active optical system[J]. Opt. Precision Eng., 2013, 21(11):2836-2842.(in Chinese)
PAUL M, ALEC B. The William Herschel Telescope[J]. Astronomy Now, 1987, 17-24.
DOUGLAS R N, VICTOR K, JOHN A, et al.. Active tangent link system for transverse support of large thin meniscus mirrors[J]. SPIE, 2007, 6665:66650F.
吴小霞. 弯月薄镜的切向侧支撑设计研究[J]. 长春理工大学学报(自然科学版), 2011, 34(1):53-56.WU X X. Design research on tangent lateral support of thin meniscus mirror[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2011, 34(1):53-56.(in Chinese)
Gerhard Schwesinger. Nondistorting lateral edge support of large telescope mirrors[J]. Applied Optics, 1994, 33(7):1198-1202.
GERHARD S. Lateral support of very large telescope mirrors by edge forces only[J].Journal modern optics, 1991, 38:1507-1516.
NOETHE L, AEDREONI G, FRANZA F, et al.. Latest developments of active optics of the ESO NTT and the implication for the ESO VLT[J]. SPIE, 1991, 1542:293-296.
陈宝刚, 明名, 吕天宇. 大口径球面反射镜曲率半径的精确测量[J]. 中国光学, 2014, 7(1):163-168.CHEN B G, MING M, LV T Y. Precise measurement of curvature radius for spherical mirror with large aperture[J]. Chinese Optics, 2014, 7(1):163-168.(in Chinese)
JAMES E K, DAVID G. AEOS 3.67m telescope primary mirror active control system[J]. SPIE, 1998, 3352:400-411.
吴小霞, 李剑锋, 邵亮, 等. 4m SiC轻量化主镜的主动支撑系统[J]. 光学精密工程, 2014, 22(9):2451-2453.WU X X, LI J F, SHAO L, et al.. Active support system for 4m SiC lightweight primary mirror[J]. Opt. Precision Eng., 2014, 22(9):2451-2453.(in Chinese)
0
浏览量
163
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构