浏览全部资源
扫码关注微信
浙江师范大学 精密机械研究所, 浙江 金华 321004
收稿日期:2015-07-20,
修回日期:2015-08-25,
纸质出版日期:2016-03-25
移动端阅览
杨灿, 曹泽卫, 尹晓红等. 微注塑散热器流动诱导热导率变化的多尺度数值预测[J]. 光学精密工程, 2016,24(3): 566-573
YANG Can, CAO Ze-wei, YIN Xiao-hong etc. Multi-scale numerical prediction of flow-induced thermal conductivity variation in micro-injection molded heat sink[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 566-573
杨灿, 曹泽卫, 尹晓红等. 微注塑散热器流动诱导热导率变化的多尺度数值预测[J]. 光学精密工程, 2016,24(3): 566-573 DOI: 10.3788/OPE.20162403.0566.
YANG Can, CAO Ze-wei, YIN Xiao-hong etc. Multi-scale numerical prediction of flow-induced thermal conductivity variation in micro-injection molded heat sink[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 566-573 DOI: 10.3788/OPE.20162403.0566.
为进一步提高聚合物复合材料热导率
采用多尺度数值预测法研究了微注塑聚酰胺/碳纤维(PA66/CFs)散热器内部CF的流动诱导取向及其对制品热导率的影响规律。首先
利用Moldflow获取CF取向张量
并以Comsol Multiphysics构建与之对应的复合材料微元胞。利用正交实验法研究熔体温度、模具温度、最大注射压力及注射流率对微散热器热导率的影响。然后
对预测数据进行分析获得最优注塑参数组合。最后
对优化结果进行模拟实验
验证了多尺度数值预测法的有效性。结果显示:上述各参数重要程度由大到小依次排列为熔体温度、注射流率、最大注射压力和模具温度;最佳组合为熔体温度360℃、模具温度70℃、最大注射压力220 MPa及注射流率3×10
-4
cm
3
/s。另外
流动诱导热导率变化最大值达0.36 W/(m·K)
为基体热导率的1.5倍。得到的研究结果为从工艺调控的新角度来改善聚合物复合材料的导热性能提供了理论依据与数据支撑。
To further increase the thermal conductivity of polymer composites
a multi-scale numerical prediction method was applied to investigation of the CF flow induced orientation in micro-injection molded polyamide/carbon fibers(PA66/CFs) micro heat sink as well as its influence on the thermal conductivity of composites. Firstly
the Moldflow was used to determine the orientation tensor of the CF
the Comsol Multiphysics was used to develop the corresponding micro cell of the composite
and an orthogonal experiment method was utilized to study the effects of processing parameters including melt temperature
mold temperature
maximal injection pressure and injection flow rate
on the thermal conductivity. Then
on the basis of prediction data analysis
the optimal combination of the injection molding processing parameters was obtained. Finally
the optimal combination results were confirmed using simulated experiment
which verified the feasibility of the proposed multi-scale numerical prediction method. The results show that the influential parameters in descending order of importance are melt temperature
injection flow rate
maximal injection pressure
and mold temperature. Moreover
the obtained optimal combination of the investigated factors is identified as the melt temperature of 360℃
mold temperature of 70℃
maximal injection pressure of 220 MPa and the injection flow rate of 3×10
-4
cm
3
/s. In addition
the maximal variation of the flow-induced thermal conductivity is determined as 0.36 W/(m·K)
which is 1.5 times that of polymer matrix. The findings in the present work provide theoretical basis and data supports for further increasing the thermal conductivity of polymer composites from a new viewpoint of processing control.
张冬至. 静电诱导自组装碳纳米管薄膜的结构表征与电学性能[J]. 光学精密工程, 2014, 22(6):1562-1570.ZHANG D ZH. Structure characterization and electric properties of electrostatic-induced self-assembly carbon nanotube films[J]. Optics and Precision Engineering, 2014, 22(6):1562-1570.(in Chinese)
YANG C, YIN X H, CHENG G M. Microinjection molding of microsystem components:New aspects in improving performance[J]. Journal of Micromechanics and Microengineering, 2013, 23(9):093001.
刘汉, 吴宏武. 填充型导热高分子复合材料研究进展[J]. 塑料工业, 2011, 39(4):10-13.LIU H, WU H W. Research progress of thermal conductive polymer composites with fillers[J]. China Plastics Industry, 2011, 39(4):10-13.(in Chinese)
马雅丽, 刘文开, 刘冲, 等. UV-LIGA技术在制作细胞培养器微注塑模具型腔中的应用[J]. 光学精密工程, 2013, 21(5):1228-1233.M A Y L,LIU W K,LIU CH,et al.. Application of UV-LIGA technology to machining micro-injection mold cavity of cell culture device[J]. Optics and Precision Engineering, 2013, 21(5):1228-1233.(in Chinese)
MORISHITA T, MATSUSHITA M, KATAGIRI Y, et al.. A novel morphological model for carbon nanotube/polymer composites having high thermal conductivity and electrical insulation[J]. Journal of Materials Chemistry, 2011, 21(15):5610-5614.
TENG C C, MA C C M, CHIOU K C, et al.. Synergetic effect of thermal conductive properties of epoxy composites containing functionalized multi-walled carbon nanotubes and aluminum nitride[J]. Composites Part B:Engineering, 2012, 43(2):265-271.
PAK S Y, KIM H M, KIM S Y, et al.. Synergistic improvement of thermal conductivity of thermoplastic composites with mixed boron nitride and multi-walled carbon nanotube fillers[J]. Carbon, 2012, 50(13):4830-4838.
MARCONNET A M, YAMAMOTO N, PANZER M A, et al.. Thermal conduction in aligned carbon nanotube-polymer nanocomposites with high packing density[J]. ACS Nano, 2011, 5(6):4818-4825.
钟金明, 伍晓宇, 徐斌, 等. 线切割与真空热扩散焊组合工艺制备微模具[J]. 光学精密工程, 2015, 23(4):988-995.ZHONG J M, WU X Y, XU B, et al.. Laminated fabrication of micro-mold based on WEDM and thermal diffusion welding[J]. Optics and Precision Engineering, 2015, 23(4):988-995.(in Chinese)
LIU F, GUO C, WU X, et al.. Morphological comparison of isotactic polypropylene parts prepared by micro-injection molding and conventional injection molding[J]. Polymers for Advanced Technologies, 2012, 23(3):686-694.
密亚男. 高导热氮化铝-碳纳米管/聚合物基复合材料的研究[D]. 江苏:苏州大学,2013.Mi Y N. High Thermal Conductivity Aluminum Nitride-multiwalled Carbon Nanotube/Cyanate Ester Composites[D]. Jiangsu:Soochow University, 2013.(in Chinese)
KARKRI M, IBOS L, GARNIER B. Comparison of experimental and simulated effective thermal conductivity of polymer matrix filled with metallic spheres:Thermal contact resistance and particle size effect[J]. Journal of Composite Materials, 2015, 49(24):3017-3030.
NOH Y J, KIM S Y. Synergistic improvement of thermal conductivity in polymer composites filled with pitch based carbon fiber and graphene nanoplatelets[J]. Polymer Testing, 2015, 45:132-138.
SHA B, DIMOV S, GRIFFITHS C, et al.. Micro-injection moulding:Factors affecting the achievable aspect ratios[J]. International Journal of Advanced Manufacturing Technology, 2007, 33(1-2):147-156.
VINCENTA M, GIROUDA T, CLARKEB A, et al.. Description and modeling of fiber orientation in injection molding of fiber reinforced thermoplastics[J]. Polymer, 2005, 46:6719-6725.
YANG C, LI L, HUANG H X, et al.. Replication characterization of microribs fabricated by combining ultraprecision machining and microinjection molding[J]. Polymer Engineering and Science, 2010, 50(10):2021-2030.
0
浏览量
112
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构