浏览全部资源
扫码关注微信
1. 中国科学院 长春光学精密机械与物理研究所,吉林 长春,中国,130033
2. 中国科学院大学 北京,中国,100049
收稿日期:2015-05-20,
修回日期:2015-06-21,
纸质出版日期:2016-03-25
移动端阅览
王延东, 张涛, 杨春雷等. 基于经验模态分解/高阶统计法实现微机械陀螺降噪[J]. 光学精密工程, 2016,24(3): 574-581
WANG Yan-dong, ZHANG Tao, YANG Chun-lei etc. MEMS gyro denoising by EMD-HOS method[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 574-581
王延东, 张涛, 杨春雷等. 基于经验模态分解/高阶统计法实现微机械陀螺降噪[J]. 光学精密工程, 2016,24(3): 574-581 DOI: 10.3788/OPE.20162403.0574.
WANG Yan-dong, ZHANG Tao, YANG Chun-lei etc. MEMS gyro denoising by EMD-HOS method[J]. Editorial Office of Optics and Precision Engineering, 2016,24(3): 574-581 DOI: 10.3788/OPE.20162403.0574.
针对微机电系统(MEMS)陀螺存在的非线性、非平稳噪声
提出了应用经验模态分解/高阶统计(EMD-HOS)的降噪方法对MEMS陀螺进行降噪。首先
采集MEMS陀螺输出信号
根据EMD算法将信号分解成本征模态函数(IMF)。采用Bootstrap技术分别估计各IMF的峰度值
进行高斯特性检验
滤除高斯IMF。接着
使用方差聚合法分别计算IMF的Hurst指数
根据Hurst指数计算阈值
对各IMF进行软阈值处理。将阈值处理后的剩余IMF进行重构
达到降噪的目的。最后
通过交叠式Allan方差分析对滤波前后数据进行处理
绘制Allan方差与相关时间关系曲线
利用非线性最小二乘拟合方法
计算陀螺噪声各项指标。实验表明
EMD-HOS和软阈值处理能够有效地对MEMS陀螺降噪
其信噪比提高了5.6 dB
各项陀螺随机噪声关键指标提高近一个量级。
For the nonlinear and non-stationary signals existing in a MEMS(Micro-electronic-mechanic system)gyro
a denosing method based on the Empirical Mode Decomposition/High Order Statistic(EMD/HOS) was proposed. Firstly
the MEMS gyro signals were captured
and they were decomposed into a cluster of intrinsic mode function(IMF) based on the proposed EMD/HOS sift process. The IMF peak values were estimated by using Bootstrap technology
respectively
to verify its Gaussianity and the Gaussian components were filtered directly. Then the variance algorithm was used to calculate the Hurst exponent of the IMF. According to the Hurst exponent
the threshold was calculated and the each IMF was processed by soft threshold technology. Finally
the remained IMFs after threshold processing were reconstructed to implement the signal denoise. Moreover
the Allan variance algorithm was introduced to analyze the gyro noise
and the characteristic of gyro noise could be observed via the curve of related time and root Allan variance. The conclusion is that EMD-HOS and soft threshold technology decrease the noise of MEMS obviously
the SNR is increased by 5.6 dB
and each indicator of MEMS; gyro noise is improved almost by one order.
喻敏, 王斌, 王文波, 等. 联合EMD与核主成分分析的激光陀螺信号消噪[J]. 武汉大学学报·信息科学版, 2015, 40(2):233-237.YU M, WANG B, WANG W B, et al.. Laser Gyro Signal De-noising Based on EMD and Kernel Principal Component Analysis[J]. Geometrics' and Information Science of Wuhan University, 2015, 40(2):233-237.(in Chinese)
HUANG N E, SHEN Z, LONG S R, et al.. The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proc. Royal Soc. London A, 1998, 454:903-995.
GEORGE T, THOMAS D X. Signal de-noising using empirical mode decomposition and higher order statistics[J]. International Journal of Signal Processing, Image Processing and Pattern Recognition, 2011, 4(2):91-101.
WENG B, VELASCO M B, BARNER K E. ECG de-noising based on the empirical mode decomposition. Proceedings of the 28th IEEE EMBS Annual International Conference, New York, 2006:795-801.
WU Z, HUANG N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proc. Roy. Soc. London A, 2004, 460:1597-1611.
FLANDRIN P, RILLING G, GONCALVES P. Empirical mode decomposition as a filter bank[J]. IEEE Signal Process, 2004, 11(2):112-114.
PATRICK F, GABRIEL R, PAULO. Empirical Mode Decomposition as a Filter Bank[C]. IEEE SIGNAL PROCESSING LETTERS, 2004, 11(2):112-114.
DONOHO D L. De-noising by soft-thresholding[J]. IEEE Transaction on Information Theory, 1995, 41(3):613-627.
KHALDI K, ALOUANE M T, BOUDRAA A O. A new EMD de-noising approach dedicated to voiced speech signals[C]. Signals, Circuits and Systems, 2008, 2nd International Conference, 2008. SCS, 2008, 2(1):1-5.
ZOGBIY A M, BOASBASB B. The bootstrap and its application in signal processing[J]. IEEE Signal Processing Magazin, 1998, 15(1):56-76.
HUANG H C, CRESSIE N. Deterministic/stochastic wavelet decomposition for recovery of signal from noisy data[J]. Technometrics, 2000, 42(2):262-276.
KAN H E, HIPPENSTIEL R D, FARGUES M P. Bootstrap-based signal denoising[J]. IEEE SIGNAL PROCESSING MAGAZINE, 2002, 11(1):958-962.
ZHANG W, ZHAO X H. Wavelet Thresholding using higher order statistics for signal denoising[C]. Info-tech and Info-net, 2001, ICⅡ, 2001, Beijing:803-808.
ESPOSTI F, SIGNORINI M G. Evaluation of a Blind Method for the Estimation of the Hursts exponent in time series[C]. 14th European Signal Processing Conference, EUSIPCO 2006, Florence, 2006:4-8.
KOPSINIS Y, LAUGHLIN S. Development of EMD Based Denoising methods inspired by wavelet thresholding[J]. IEEE Transactions on Signal Processing 2009, 57:1351-1362.
RAVIER P, AMBLARD P O. Wavelet packets and de-noising based on higher-order-statistics for transient detection[J]. Signal Processing, 2001, 81(9), 1909-1926.
NADIM G E. Detection and Localization of Radar Pulses in Severe Noisy Environment Using Wavelet Packets Transform Combined with Higher-Order-Statistics Thresholding Technique[C]. The 4th International Signal Processing Conference, GSPx, California, 2006:1152-1160.
薛海建, 郭晓松, 周召发, 等. 基于经验模分解的陀螺信号去噪[J], 机械科学与技术, 2013, 32(7):1049-1053.XUE H J, GUO X S, ZH F, et al.. A de-noising method for gyro signal based on empirical mode decomposition[J]. Mechanical Science and Technology for Aerospace Engineering, 2013, 32(7):1049-1053.(in Chinese)
丁策, 戴明, 李嘉全, 等. 光电陀螺稳定平台的分数阶控制[J]. 光学精密工程, 2014, 22(2):383-486.DING C, DAI M, LI J Q. Fractional control of stabilized platform for photoelectric gyro[J]. Opt. Precision Eng., 2014, 22(2):383-486.(in Chinese)
檀立刚, 戴明, 刘晶红, 等. 机载光电测量设备目标自主定位误差分析[J]. 光学精密工程, 2013, 21(12):3134-3139.TAN L G, DAI M, LIU J H, et al.. Error analysis of target automatic positioning for airborne photo-electro measuring device[J]. Opt. Precision Eng., 2013, 21(12):3134-3139.(in Chinese)
0
浏览量
87
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构