浏览全部资源
扫码关注微信
1. 北京航空航天大学 自动化科学与电气工程学院 北京,100191
2. 山东大学 机械工程学院 高效洁净机械制造教育部重点实验室,山东 济南,250061
[ "闫鹏(1975-),男,山东济南人,教授,博士生导师,中组部\"青年QR计划\"入选者,1997年于东南大学获学士学位,1999年于东南大学获硕士学位,2003年于美国俄亥俄州立大学获博士学位(PhD),目前主要从事超精密机电一体化系统的设计分析和伺服控制技术,E-mail:pengyan2007@gmail.com" ]
[ "张立龙(1990-),男,山东济宁人,硕士,2014年于山东大学获学士学位,主要从事面向纳米压印设备的微纳操控系统方面的研究。E-mail:1186157645@qq.com" ]
[ "刘鹏博(1990-),男,山东肥城人,博士研究生,2012年于中国海洋大学获学士学位,主要从事微纳操控柔性机构方面的研究。E-mail:pengbosdu@163.com" ]
收稿日期:2015-11-20,
修回日期:2015-12-17,
纸质出版日期:2016-04-25
移动端阅览
闫鹏, 张立龙, 刘鹏博. 具有耦合补偿功能的大行程二维柔性平台[J]. 光学精密工程, 2016,24(4): 804-811
YAN Peng, ZHANG Li-long, LIU Peng-bo. Flexure-based <i>XY</i> micro-positioning stage with large stroke and coupling compensation[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 804-811
闫鹏, 张立龙, 刘鹏博. 具有耦合补偿功能的大行程二维柔性平台[J]. 光学精密工程, 2016,24(4): 804-811 DOI: 10.3788/OPE.20162404.0804.
YAN Peng, ZHANG Li-long, LIU Peng-bo. Flexure-based <i>XY</i> micro-positioning stage with large stroke and coupling compensation[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 804-811 DOI: 10.3788/OPE.20162404.0804.
设计了一种基于双级复合平行板簧结构的大行程二维并联微位移平台
以解决二维柔性平台尺寸大、行程小
运动耦合误差大
运动性能受加工误差影响等问题。设计的微位移平台在每个运动方向均采用两个音圈电机同时驱动
通过调节两音圈电机信号比例来补偿加工误差造成的运动耦合误差
完成
X和Y方
向的运动解耦
从而降低系统对加工精度的依赖程度。根据卡氏第二定理建立了平台力学模型
优化了平台尺寸参数
并利用有限元仿真对设计的平台性能进行验证。最后
搭建了微位移定位系统实验平台。实验结果表明:设计的柔性平台行程与平台尺寸占比大
定位精度高
运动解耦性能得到大幅改善
实现了±2.25 mm×±2.27 mm工作行程
工作行程与平台尺寸占比约为1.73%
运动耦合误差小于0.27%。
A two-dimensional parallel micro-displacement stage was designed based on double compound parallelogram flexures to solve the shortcomings of the stage in smaller motion strokes
larger coupling errors
and the motion performance sensitive to manufacturing errors. The designed micro-displacement stage was driven by two voice coil motors in each direction
the coupling motion errors caused by manufacturing errors were compensated by tuning the ratio of the signals imposed on the two drivers and the motion decouplings for
X
direction and
Y
direction was implemented. By which
the dependence of the system on manufacturing errors was reduced. On the basis of the Castigliano's second theorem
a model of stage mechanism was established to optimize the size parameters of the stage
and the performance of the designed stage was verified by finite element analysis. Finally
an experimental platform for the micro-displacement position was established. The experimental results demonstrate that the designed stage has a bigger stage stroke
a bigger area ratio (workspace size to planar dimension of the stage)
higher position accuracy
and excellent decoupling performance. It shows a large motion range of ±2.25 mm×±2.27 mm
an area ratio of 1.73%
and the coupling error of less than 0.27%.
BONNAIL N, TONNEAU D, JANDARD F, et al.. Variable structure control of a piezoelectric actuator for a scanning tunneling microscope[J]. IEEE Trans. Ind. Electron, 2004, 51(2):354-363.
ZHAO J, WANG H, GAO R, et al.. A novel alignment mechanism employing orthogonal connected multi-layered flexible hinges for both leveling and centering[J]. Rev. Sci. Instrum, 2012, 83(6):065102-1-065102-7.
LIU P, YAN P, ZHANG Z. Design and analysis of an x-y parallel nanopositioner supporting large-stroke servomechanism[J].Proceedings of the Institution of Mechanical Engineers Part C Journal of Mechanical Engineering Science, 2015, 229(2):364-376.
ZHANG Y, TAN K, HUANG S. Vision-servo system for automated cell injection[J]. IEEE Trans. Ind. Electron., 2009, 56(1):231-238.
赵磊, 巩岩, 赵阳. 光刻投影物镜中的透镜X-Y柔性微动调整机构[J]. 光学精密工程, 2013, 21(6):1426-1433. ZHAO L, GONG Y, ZHAO Y. Flexure-based X-Y micro-motion mechanism used in lithographic lens[J]. Opt. Precision Eng., 2013, 21(6):1426-1433. (in Chinese)
胡俊峰, 张宪民. 3自由度精密定位平台的运动特性和优化设计[J]. 光学精密工程, 2012, 20(12):2686-2695. HU J F, ZHANG X M, Kinematical properties and optimal design of 3-DOF precision positioning stage[J]. Opt. Precision Eng., 2012, 20(12):2686-2695. (in Chinese)
马立, 谢炜, 刘波, 等. 柔性铰链微定位平台的设计[J]. 光学精密工程, 2014, 22(2):338-345. MA L, XIE W, LIU B, et al.. Design of micro-positioning stage with flexure hinge[J]. Opt. Precision Eng., 2014, 22(2):338-345. (in Chinese)
LI Y, XU Q. A novel piezoactuated XY stage with parallel, decoupled, and stacked flexure structure for micro-/nanopositioning[J]. IEEE Trans. Ind. Electron., 2011, 58(8):3601-3615.
于靖军, 裴旭, 毕树生, 等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报, 2010, 46(13):2-12. YU J J, PEI X, BI SH SH, et al.. State-of-arts of Design Method for Flexure Mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13):2-12. (in Chinese)
AWTAR S, SLOCUM A H. Constraint-based design of parallel kinematic XY flexure mechanisms[J]. J. Mech. Des., 2007, 129(8):816-830.
AWTAR S, PARMAR G. Design of a large range XY nanopositioning system[J]. Journal of Mechanisms and Robotics, 2013, 5(2):021008.
XU Q.Design, testing and precision control of a novel long-stroke flexure micropositioning system[J]. Mechanism and Machine Theory, 2013, 70:209-224.
XU Q. Design and development of a compact flexure-based XY precision positioning system with centimeter range[J]. IEEE Trans. Ind. Electron., 2014, 61(2):893-902.
XU Q. New flexure parallel-kinematic micropositioning system with arge workspace[J]. IEEE Trans. Robot., 2012, 28(2):478-491.
0
浏览量
518
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构