浏览全部资源
扫码关注微信
1. 西安交通大学 机械工程学院,陕西 西安,710049
2. 中国工程物理研究院 总体工程研究所,四川 绵阳,621999
收稿日期:2015-12-11,
修回日期:2016-01-20,
纸质出版日期:2016-04-25
移动端阅览
凌明祥, 刘谦, 曹军义等. 压电位移放大机构的力学解析模型及有限元分析[J]. 光学精密工程, 2016,24(4): 812-818
LING Ming-xiang, LIU Qian, CAO Jun-yi etc. Analytical model and finite element analysis of piezoelectric displacement amplification mechanism[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 812-818
凌明祥, 刘谦, 曹军义等. 压电位移放大机构的力学解析模型及有限元分析[J]. 光学精密工程, 2016,24(4): 812-818 DOI: 10.3788/OPE.20162404.0812.
LING Ming-xiang, LIU Qian, CAO Jun-yi etc. Analytical model and finite element analysis of piezoelectric displacement amplification mechanism[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 812-818 DOI: 10.3788/OPE.20162404.0812.
研究了压电位移放大机构的运动学和动力学建模问题。基于能量守恒原理和弹性梁弯曲理论推导了桥式位移放大机构的位移放大比等静力学解析模型;在此基础上
通过拉格朗日方程建立了桥式位移放大机构的固有频率解析模型。通过有限元计算验证和分析了提出的解析模型的可行性和优越性
并与国内外典型的位移放大比数学模型进行了比较。结果表明:由于本文提出的模型考虑了位移放大机构的拉伸和弯曲变形
并且摒弃了国内外普遍采用近似几何关系进行数学推导的思路
因此所建立的位移放大比解析模型精度更高;固有频率解析计算结果与有限元模态分析结果的相对误差约为5%。得到的结果显示:本文给出的建模方法以及位移放大比、固有频率等解析模型可为柔性机构的优化设计和研制提供依据和参考。
Kinematic and dynamic modeling of piezoelectric displacement amplifying mechanisms was researched. The static analytical models(such as displacement amplifying ratio) for a bridge type compliant displacement amplifying mechanism was derived based on the law of conservation of energy and elastic beam theory. Then
an analytical model of natural frequency was also built by employing the Lagrange equation. The finite element analysis was used for verification of the feasibility and superiority of proposed analytical models and for comparison with several typical mathematical models deduced by other authors. The results show that the proposed theoretical formula of the displacement amplification ratio has the highest accuracy
because it considers both the translational and rotational stiffnesses of the mechanism during modeling and abandons the approximate geometric relationship between input and output displacements of the bridge-type compliant mechanism. Moreover
the discrepancy between the theoretical formula of natural frequency in this paper and the finite element calculation results is kept within 5%. The modeling method and corresponding theoretical formulas of the displacement amplification ratio and natural frequency proposed in this paper provides a useful and accurate reference for optimal designing and manufacturing of satisfactory structures of bridge-type displacement amplification mechanisms.
ZHANG SH J, LI F, JIANG X N, et al. Review on Piezoelectric, Ultrasonic, and Magentoelectric Actuators[J]. Journal of Advanced Dielectrics, 2012, 2(1):1230001.
ADRIEN B, RONAN L B, FABIEN F, et al.. Precise positioning and active vibration isolation using piezoelectric actuator with hysteresis compensation[J]. Journal of Intelligent Material Systems and Structures, 2014, 25(2):155-168.
田莳, 徐永利. 智能材料系统和结构中的压电材料[J]. 功能材料, 1996, 27(2):103-109. TIAN SH, XU Y L. Piezoelectric materials in intelligent material systems and structures[J]. Journal of Functional Materials, 1996, 27(2):103-109. (in Chinese)
张涛, 孙立宁, 蔡鹤皋. 压电陶瓷基本特性研究[J]. 光学精密工程, 1998, 6(5):26-32. ZHANG T, SUN L N, CAI H G. Study on the fundamental characteristics of piezoelectric element[J]. Opt. Precision Eng., 1998, 6(5):26-32.(in Chinese)
顾守东, 杨志刚, 江海. 压电驱动液压放大式喷射系统[J]. 光学精密工程, 2015, 23(6):1627-1634. GU SH D, YANG ZH G, JIANG H. Piezoelectric driven hydraulic amplification jetting system[J]. Opt. Precision Eng., 2015, 23(6):1627-1634.(in Chinese)
马立, 谢炜, 刘波, 等. 柔性铰链微定位平台的设计[J]. 光学精密工程, 2014, 22(2):338-345. MA L, XIE W, LIU B, et al.. Design of micro-positioning stage with flexure hinge[J]. Opt. Precision Eng., 2014, 22(2):338-345.(in Chinese)
LALANDE F, CHAUDHRY Z, ROGERS C A. A simplified geometrically nonlinear approach to the analysis of the Moonie actuator[J]. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 1995, 59(1):21-27.
DOGAN A, UCHINO K. Composite piezoelectric transducer with truncated conical endcaps "Cymbal"[J]. IEEE Trans. Ultrasonics Ferroelectrics Freq.Control., 1997(44):597-605.
POKINES B J, GARCIS E. A smart material micro amplification mechanism fabricated using LIGA[J]. Smart Mater. Struct, 1998, 7:105-112.
LOBONTIU N, GARCIA E. Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J]. Computers and Structures, 2003, 81:2797-2810.
MA H W, YAO S M, WANG L Q, et al.. Analysis of the displacement amplification ratio of a bridge-type flexure hinge[J]. Sensors Actuators A, 2006, 132:730-736.
NICOLAE L, EPHRAHIM G. Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanisms[J]. Computers and Structures, 2003, 81:2797-2810.
NI Y, DENG Z Q, WU X, et al.. Modeling and analysis of an over-constrained flexure-based compliant mechanism[J]. Measurement, 2014, 50:270-278.
RYU J W. 6-Axis Ultra-precision Positioning Mechanism Design and Positioning Control[D]. KAIST, 1997.
YE G, LI W, WANG Y Q, et al.. Kinematics analysis of bridge-type micro-displacement mechanism based on flexure hinge[C]. Proceedings of the 2010 IEEE International Conference on Information and Automation, 2010:66-100.
XU Q S, LI Y M. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier[J]. Mechanism and Machine Theory, 2011, 46:183-200.
CHEN J L, ZHANG CH L, XU M L, et al.. Rhombic micro-displacement amplifier for piezoelectric actuator and its linear and hybrid model[J]. Mechanical Systems and Signal Processing, 2015, 50-51:580-593.
QI K Q, XIANG Y, FANG CH, et al.. Analysis of the displacement amplification ratio of bridge-type mechanism[J]. Mechanism and Machine Theory, 2015, 87:45-56.
KOSEKI Y, TANIKAWA T, ARAI T, et al.. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method[C]. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2000:786-792.
0
浏览量
516
下载量
9
CSCD
关联资源
相关文章
相关作者
相关机构