浏览全部资源
扫码关注微信
燕山大学 自润滑关节轴承共性技术航空科技重点实验室,河北 秦皇岛,066004
收稿日期:2015-11-12,
修回日期:2015-12-20,
纸质出版日期:2016-04-25
移动端阅览
李巍, 胡占齐, 杨育林等. 关节轴承寿命试验机在线磨损量检测综合误差建模[J]. 光学精密工程, 2016,24(4): 844-854
LI Wei, HU Zhan-qi, YANG Yu-lin etc. Comprehensive error modeling of real-time wear-depth detecting of spherical plain bearing tester[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 844-854
李巍, 胡占齐, 杨育林等. 关节轴承寿命试验机在线磨损量检测综合误差建模[J]. 光学精密工程, 2016,24(4): 844-854 DOI: 10.3788/OPE.20162404.0844.
LI Wei, HU Zhan-qi, YANG Yu-lin etc. Comprehensive error modeling of real-time wear-depth detecting of spherical plain bearing tester[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 844-854 DOI: 10.3788/OPE.20162404.0844.
为了提升关节轴承寿命试验机在线磨损量检测的精度
以自制的关节轴承寿命试验机为研究对象
对寿命试验机磨损量检测系统进行了分析和建模。介绍了关节轴承磨损量在线检测原理
分析了影响磨损量检测精度的误差因素。然后以多体系统运动学理论为基础
建立了关节轴承寿命试验机磨损量检测系统综合误差模型。通过实验检测得到磨损量检测系统由于载荷变化而产生的磨损量检测误差(简称载荷误差)
并依据上述实验参数
采用有限元仿真的方法对载荷误差实验工况下的综合误差模型进行了验证。实验与计算结果表明
实验值与计算值最大相差0.028 mm
除基准值外两者最小误差为0.012 mm。计算值与实验值较为接近
验证了此工况条件下多体综合误差模型的正确性。
To improve the real-time detecting precision of the wear depth for spherical plain bearing testers
a self-made spherical plain bearing tester was selected as studied objective
and its wear depth detecting system was analyzed and molded. The testing principle of the wear depth of the spherical plain bearing was introduced and the error factors affecting the wear-depth detecting precision were analyzed. Then
a comprehensive error model of the wear-depth detecting system for the spherical plain bearing was built by the multi-body system theory(MBS). In addition
the loading deformation of the wear-depth detecting system caused by the varying loading was detected. Finally
according to the above experimental parameters
the loading deformation of the related parts of the comprehensive error model was calculated by Finite Element Method(FEM). By comparison
the maximum difference between the experimental results and the calculated values is 0.028 mm
and the minimum difference is 0.012 mm. On the whole
these values are closer
which verify the correctness of the comprehensive error model under the loading error experimental conditions.
SLINEY H E. Some load limits and self-lubricating properties of plain spherical bearings with molded graphite fiber reinforced polyimide liners to 320[R]. USA:NASA-Lewis research center, 1978:1-13.
PETER H. Helicopter application puts ceramic-coated spherical plain bearings through their paces[R]. UK:SKF-AMPEP PLC, 2005:1-6.
CHEN J S. Neural network-based modelling and error compensation of thermally-induced spindle errors[J]. International Journal of Advanced Manufacturing Technology, 1996, 12(4):303-308.
WANG K C, TSENG P C, LIN K M. Thermal error modeling of a machining center using grey system theory and adaptive network-based fuzzy inference system[J]. JSME International Journal:series C, Mechanical Systems, Machine Elements & Manufacturing, 2007, 49(4):1179-1187.
YAN J Y, YANG J G. Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation[J]. International Journal of Advanced Manufacturing Technology, 2009, 43(11-12):1124-1132.
张恩忠, 赵继, 冀世军, 等. 光学自由曲面研抛机床的综合误差建模与补偿[J]. 光学精密工程, 2015, 23(6):1587-1597. ZHANG E ZH, ZHAO J, JI SH J, et al.. Comprehensive error modeling and compensation for optical free-form surface polishing machine tool[J]. Opt. Precision Eng., 2015, 23(6):1587-1597.(in Chinese)
ZHONG G Y, WANG C Q, YANG S F. Position geometric error modeling, identification and compensation for large 5-axis machining center prototype[J]. International Journal of Machine Tools & Manufacture, 2015(89), 142-150.
ZHU S W, DING G F, QIN S F. Integrated geometric error modeling, identification and compensation of CNC machine tools[J]. International Journal of Machine Tools & Manufacture, 2012, 52(1):24-29.
ZHU S W, DING G F, MA S W. Workpiece locating error prediction and compensation in fixtures[J]. The International Journal of Advanced Manufacturing Technology, 2012, 67(5-8):1423-1432.
KONG L B, CHEUNG C F, TO S. A kinematics and experimental analysis of form error compensation in ultra-precision machining[J]. International Journal of Machine Tools & Manufacture, 2008(48):1408-1419.
KONG L B, CHEUNG C F. Prediction of surface generation in ultra-precision raster milling of optical freeform surfaces using an Integrated Kinematics Error Model[J]. Advances in Engineering Software, 2012, 45(1):124-136.
CUI G W, LU Y, GAO D. A novel error compensation implementing strategy and realizing on Siemens 840D CNC systems[J]. International Journal of Advanced Manufacturing Technology, 2012, 61(5-8):595-608.
CUI G W, LU Y, LI J G. Geometric error compensation software system for CNC machine tools based on NC program reconstructing[J]. International Journal of Advanced Manufacturing Technology, 2012, 63(1-4):169-180.
CHEN S H, YAN H Z, MING X Z. Analysis and modeling of error of spiral bevel gear grinder based on multi-body system theory[J]. Journal of Central South University of Technology, 2008, 15(5):706-711.
FAN J W, GUAN J L, WANG W C. A universal modeling method for enhancement the volumetric accuracy of CNC machine tools[J]. Journal of Materials Processing Technology, 2002, 129(1-3):624-628.
ZHANG Q. Study on the compensation technique of positioning errors for nc machine tools[J]. Journal of Tianjin University, 1998, 4(2):184-187.
JOSEPHS H R. Dynamics of mechanical systems[M]. New York:CRC Press, 2000:605-613.
粟时平. 多轴数控机床精度建模与误差补偿方法研究[D]. 长沙:中国人民解放军国防科学技术大学, 2002. SU SH P. Study on the methods of precision modeling and error compensation for Multi-axis CNC machine tools[D]. Changsha:The National University of Defense Technology, 2002.(in Chinese)
0
浏览量
233
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构