浏览全部资源
扫码关注微信
浙江工业大学 特种装备制造与先进加工技术教育部重点实验室,浙江 杭州,310032
收稿日期:2015-09-19,
修回日期:2015-12-23,
纸质出版日期:2016-04-25
移动端阅览
计时鸣, 黄希欢, 谭大鹏等. 气-液-固三相磨粒流光整加工及其工艺参数优化[J]. 光学精密工程, 2016,24(4): 855-864
JI Shi-Ming, HUANG Xi-Huan, TAN Da-Peng etc. Gas-liquid-solid abrasive flow polishing and its process parameter optimization[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 855-864
计时鸣, 黄希欢, 谭大鹏等. 气-液-固三相磨粒流光整加工及其工艺参数优化[J]. 光学精密工程, 2016,24(4): 855-864 DOI: 10.3788/OPE.20162404.0855.
JI Shi-Ming, HUANG Xi-Huan, TAN Da-Peng etc. Gas-liquid-solid abrasive flow polishing and its process parameter optimization[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 855-864 DOI: 10.3788/OPE.20162404.0855.
考虑用流体抛光法加工大尺度工件存在效率低下问题
本文提出了一种气-液-固三相磨粒流抛光方法。该方法在约束流场中引入微纳米气泡
利用气泡在溃灭时释放的能量加速驱动磨粒运动
从而有效提升抛光效率。实验显示:在加工过程中
离心泵的发热会导致流体黏度下降
进而影响工件近壁面的湍动能和动压力的大小及分布
而加工工件近壁面的湍动能和动压力会对表面纹理的均匀性和材料的去除效率有重要影响。针对上述实验结果
文中基于对磨粒流抛光机理的研究
提出一种通过改变入口流速来补偿温升带来的湍动能和动压力变化的方法
实验求得了抛光流体温度从20℃到60℃之间的9个均等点对应的最优入口流速值。实验表明
相对未加入气泡时
该抛光方法的加工效率得到提高
而调速补偿明显提升了工件表面加工质量。
A gas-liquid-solid three-phase abrasive flow finishing method was proposed to improve the efficiency of fluid-based finishing for large-scale workpieces. By introducing micro-nano bubbles into a restrain flow field
the method utilized the energy released by the bubble collapsing to accelerate the motions of abrasive particles and to improve the finishing efficiency. During the finishing process
the fluid viscosity might decline owing to the centrifugal pump heat
and it could influence the amplitudes and profiles of turbulent kinetic energy and dynamic pressure in the near-wall region. Furthermore
the turbulent kinetic energy and dynamic pressure of near-wall region have a major impact on the uniformity of the surface texture and the removal efficiency. On the basis of the results mentioned above
a method to change the inlet velocity to compensate the temperature rising brought by the turbulent kinetic energy and dynamic pressure changes was proposed
and the optimal inlet velocity of finishing fluid temperature from 20℃ to 60℃ between the corresponding nine equal points was obtained. Experimental results show that the gas-liquid-solid three-phase abrasive flow finishing method improves the efficiency respect to traditional methods without the bubble processing
and the inlet velocity compensation improves the quality of workpiece surfaces significantly.
白杨, 张峰, 李龙响, 等. 碳化硅基底改性硅表面的磁流变抛光[J]. 光学学报, 2015, 35(3):308-315. BAI Y, ZHANG F, LI L X, et al.. Manufacture of silicon modification layer on Silicon Carbide surface by magnetorheological finishing[J].Acta Optica Sinica, 2015, 35(3):308-315. (in Chinese)
张峰. 非球面碳化硅表面硅改性层的数控化学机械抛光[J]. 光学精密工程, 2013, 21(12):3015-3020. ZHANG F. Computer-controlled chemical mechanical polishing of silicon modification layer on aspheric silicon carbide surface[J]. Opt. Precision Eng., 2013, 21(12):3015-3020. (in Chinese)
唐瓦, 邓伟杰, 李锐钢, 等. 离子束抛光高陡度离轴非球面的去除函数修正[J]. 光学精密工程, 2015, 23(6):1572-1579. TANG W, DENG W J, LI R G, et al.. Correction of removal function of ion beam figuring highly steep off-axis asphere[J]. Opt. Precision Eng., 2015, 23(6):1572-1579. (in Chinese)
潘鑫, 马志斌, 高攀, 等. ECR等离子体刻蚀增强机械抛光CVD金刚石[J]. 真空科学与技术学报, 2015(2):174-178. PAN X, MA ZH B, GAO P, et al.. Polishing diamond coatings by combination of electron cyclotron resonance plasma etching and mechanical polishing[J]. Chinese Journal of Vacuum Science and Technology, 2015(2):174-178. (in Chinese)
计时鸣, 池永为, 谭大鹏. 软性磨粒流磨粒入射壁面过程及其加工特性研究[J]. 机械工程学报, 2012, 48(13):174-183. JI SH M, CHI Y W, TAN D P. Research of abrasive injection process to the wall and machining characteristic of soft abrasive flow machining[J]. Journal of Mechanical Engineering, 2012, 48(13):174-183. (in Chinese)
庞佑霞, 唐勇, 梁亮, 等. 冲蚀与空蚀交互磨损三相流场仿真与试验研究[J]. 机械工程学报, 2012, 48(3):115-120. PANG Y X, TANG Y, LIANG L, et al.. Flow field simulation and experimental research on interactive erosion and cavitation wears in three phases[J]. Journal of Mechanical Engineering, 2012, 48(3):115-120. (in Chinese)
付强, 袁寿其, 朱荣生, 等. 离心泵气液固多相流动数值模拟与试验[J]. 农业工程学报, 2012, 28(14):52-57. FU Q, YUAN SH Q, ZHU R SH, et al.. Numerical simulation and experiment on gas-liquid-solid multiphase flow in centrifugal pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(14):52-57. (in Chinese)
章梓雄董曾南. 粘性流体力学[M]. 北京:清华大学出版社, 2011. ZHANG Z X, DONG Z N. Viscous Fluid Mechanics[M]. Beijing:Tsinghua University Press, 2011. (in Chinese)
SHIH T, LIOU W W, SHABBIR A, et al.. A new eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3):227-238.
赵斌娟, 袁寿其, 刘厚林, 等. 基于Mixture多相流模型计算双流道泵全流道内固液两相湍流[J]. 农业工程学报, 2008, 24(1):7-12. ZHAO B J, YUAN SH Q, LIU H L, et al.. Simulation of solid-liquid two-phase turbulent flow in double-channel pump based on Mixture model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008, 24(1):7-12. (in Chinese)
计时鸣, 马宝丽, 谭大鹏. 结构化表面环境下软磨粒流的流场数值分析[J]. 光学精密工程, 2011, 19(9):2092-2099. JI SH M, MA B L, TAN D P. Numerical analysis of soft abrasive flow in structured restraint flow passage[J]. Opt. Precision Eng., 2011, 19(9):2092-2099. (in Chinese)
计时鸣, 付有志, 谭大鹏. 软性磨粒流双入口约束流场数值分析及加工试验研究[J]. 机械工程学报, 2012, 48(19):177-185. JI SH M, FU Y ZH, TAN D P. Numerical analysis and processing experiment of double-inlet restraint flow field in the soft abrasive flow machining[J]. Journal of Mechanical Engineering, 2012, 48(19):177-185. (in Chinese)
李琛, 计时鸣, 谭大鹏, 等. 软性磨粒流加工特性及近壁区域微切削机理[J]. 机械工程学报, 2014, 50(9):161-168 LI CH, JI SH M, TAN D P, et al.. Study of near wall area micro-cutting mechanism and finishing characteristics for softness abrasive flow finishing[J]. Journal of Mechanical Engineering, 2014, 50(9):161-168. (in Chinese)
0
浏览量
623
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构