浏览全部资源
扫码关注微信
桂林航天工业学院 广西高校无人机遥测重点实验室,广西 桂林,541004
[ "邓莉(1983-),女,四川乐山人,硕士,讲师,2005年、2008年于西南大学分别获得学士、硕士学位,主要从事数字图像处理的研究。E-mail:dengli@guat.edu.cn" ]
收稿日期:2015-11-03,
修回日期:2016-02-02,
纸质出版日期:2016-04-25
移动端阅览
邓莉,. 针对明亮区域的自适应全局暗原色先验去雾[J]. 光学精密工程, 2016,24(4): 892-901
DENG Li,. Adaptive image dehazing for bright areas based on global dark channel prior[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 892-901
邓莉,. 针对明亮区域的自适应全局暗原色先验去雾[J]. 光学精密工程, 2016,24(4): 892-901 DOI: 10.3788/OPE.20162404.0892.
DENG Li,. Adaptive image dehazing for bright areas based on global dark channel prior[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 892-901 DOI: 10.3788/OPE.20162404.0892.
针对暗原色先验去雾算法对明亮区域失效
以及分块求取暗原色存在的块状效应、Halo现象和运算复杂度较高等问题
提出了一种基于自适应参数的全局暗原色先验去雾算法。该算法采用全局暗原色操作取代分块处理
并通过模糊逻辑控制器自适应估计明亮区域的容差参数和透射率调整因子;在非明亮区域求取大气光强度后
根据自适应容差纠正明亮区域被错误估计的透射率。与常用的3种图像复原去雾算法进行了比较
结果表明:该算法去雾图像的主观视觉效果较好
且图像对比度、信息熵和平均梯度3方面的客观评价结果也明显优于其它3种对比算法。该算法可有效解决明亮区域失真和分块处理带来的上述问题
在不增加曝光处理情况下也能获得较好的去雾效果
运算效率也有较大提升。
An adaptive image dehazing algorithm based on global dark channel prior was proposed to solve the invalidation of original dark channel prior algorithm in bright areas and problems of block effect
Halo effect and higher computational complexity. In this method
the blocking operation was substituted by a global dark channel operation
and the fuzzy logic controller was used to estimate adaptively the threshold of bright areas and the adjustment factor of transmission. After the atmospheric light was estimated in non-bright areas
the miscalculated transmission in bright areas was corrected according to the adaptive tolerance. The algorithm was compared with three kinds of image restoration dehazing algorithms. Experiment results show that the algorithm shows a good subjective visual effect for dehazing images
and the objective evaluation criteria
image contrast
information entropy and average gradient are also superior in performance to those of the other algorithms compared. It concludes that the presented method effectively eliminates the distortion in bright areas and solve the above problems caused by blocking
and the visibility of dehazing image and the operating efficiency have been enhanced significantly.
TAN R T.Visibility in bad weather from a single image[C]. 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage:IEEE, 2008:1-8.
FATTAL R.Single image dehazing[C].ACM Transactions on Graphics Los Angeles:ACM, 2008, 27(3):72.
TAREL J P, HAUTIERE N. Fast visibility restoration from a single color or gray level image[C]. 2009 IEEE 12th International Conference on Computer Vision, Kyoto:IEEE, 2009:2201-2208.
HE K, SUN J, TANG X. Single image haze removal using dark channel prior[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(12):2341-2353.
蒋建国, 侯天峰, 齐美彬. 改进的基于暗原色先验的图像去雾算法[J]. 电路与系统学报, 2011, 16(2):8-12. JIANG J G, HOU T F, QI M B. Improved algorithm on image haze removal using dark channel prior[J]. Journal of Circuits and Systems, 2011, 16(2):8-12. (in Chinese)
嵇晓强, 戴明, 尹传历, 等. 航拍降质图像的去雾处理[J]. 光学精密工程, 2011, 19(7):1659-1668. JI X Q, DAI M, YIN CH L, et al.. Haze removal for aerial degraded images[J]. Opt. Precision Eng., 2011, 19(7):1659-1668, (in Chinese)
禹晶, 李大鹏, 廖庆敏. 基于物理模型的快速单幅图像去雾方法[J]. 自动化学报, 2011, 37(2):143-148. YU J, LI D P, LIAO Q M.Physics-based fast single image fog removal[J].Acta Automatica Sinica, 2011, 37(2):143-148. (in Chinese)
孙伟, 李大健, 刘宏娟, 等. 基于大气散射模型的单幅图像快速去雾[J]. 光学精密工程, 2013, 21(4):1040-1046. SUN W, LI D J, LIU H J, et al..Fast single image fog removal based on atmospheric scattering mode[J]. Opt. Precision Eng., 2013, 21(4):1040-1046, (in Chinese)
HE K, SUN J, TANG X.Guided image filtering[C].Computer Vision-ECCV 2010, Berlin:Springer, 2010:1-14.
王卫星, 肖翔, 陈良琴. 结合最小滤波和引导滤波的暗原色去雾[J]. 光学精密工程, 2015, 23(7):2100-2108. WANG W X, XIAO X, CHEN L Q. Image dark channel prior haze removal based on minimum filtering and guided filtering[J]. Opt. Precision Eng., 2015, 23(7):2100-2108. (in Chinese)
崔宝侠, 贾冬雪, 段勇. 明亮区域的暗原色先验算法[J]. 沈阳工业大学学报, 2015, 37(1):75-79. CUI B X, JIA D X, DUAN Y.Dark channel prior algorithm for bright regions[J]. Journal of Shenyang University of Technology, 2015, 37(1):75-79. (in Chinese)
李坤, 兰时勇, 张建伟, 等. 改进的基于暗原色先验的图像去雾算法[J]. 计算机技术与发展, 2015, 25(2):8-11. LI K, LAN SH Y, ZHANG J W, et al.. An improved method of haze removal based on dark channel prior[J]. Computer Technology and Development, 2015, 25(2):8-11. (in Chinese)
郑勇.基于联合均值漂移的单幅图像去雾算法研究及硬件实现[D]. 西安电子科技大学, 2014, 3:28-32. ZHENG Y. Research on single image defog based on joint mean shift and its hardware implementation[D]. Xian:Xidian Electronic University, 2014, 3:28-32. (in Chinese)
CHAVEZ P S.An improved dark-object subtraction technique for atmospheric scatting correction of multispectral data[J]. Remote Sensing of Environment, 1988, 24(3):450-479.
闻新, 周露, 李东江, 等.MATLAB模糊逻辑工具箱的分析及应用[M]. 北京:科学出版, 2001:14-15. WEN X, ZHOU L, LI D J, et al.. The Analysis and Application of the MATLAB Fuzzy Logic Toolbox[M]. Beijing:Science Press, 2001:14-15(in Chinese)
侯典柯, 吴晓红, 何小海, 等. 改进的基于边界限制的图像去雾算法[J]. 四川大学学报:工程科学版, 2015, 47(增2):136-141. HOU D K, WU X H, HE X H, et al.. An improved image dehazing algorithm based on boundary constraint[J]. Journal of Sichuan University(Engineering Science Edition), 2015, 47(Supp.2):136-141. (in Chinese)
0
浏览量
561
下载量
12
CSCD
关联资源
相关文章
相关作者
相关机构