浏览全部资源
扫码关注微信
中北大学 机械与动力工程学院,山西 太原,030051
收稿日期:2015-12-10,
修回日期:2016-02-02,
纸质出版日期:2016-04-25
移动端阅览
黄晋英, 宋国浩, 兰艳亭等. 交比不变的Camshift跟踪方法[J]. 光学精密工程, 2016,24(4): 945-953
HUANG Jin-ying, SONG Guo-hao, LAN Yan-ting etc. Camshift tracking based on constant cross ratio[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 945-953
黄晋英, 宋国浩, 兰艳亭等. 交比不变的Camshift跟踪方法[J]. 光学精密工程, 2016,24(4): 945-953 DOI: 10.3788/OPE.20162404.0945.
HUANG Jin-ying, SONG Guo-hao, LAN Yan-ting etc. Camshift tracking based on constant cross ratio[J]. Editorial Office of Optics and Precision Engineering, 2016,24(4): 945-953 DOI: 10.3788/OPE.20162404.0945.
为了提高Camshift跟踪方法在复杂环境下的跟踪性能
应用被跟踪目标内部各特征像素间的交比不变原理
提出了一种改进的Camshift跟踪方法。该方法通过分析被跟踪的目标模型
计算出其内部各特征像素间的坐标关系;将内部数据间的交比不变量作为所提出的跟踪方法的约束条件
对跟踪错误的像素点进行校正
并将跟踪过程中连续两帧图像的内部特征像素间的距离比作为跟踪效果的评判标准。用改进的Camshift跟踪方法分别对标准测试视频内的视频信息和实际拍摄的视频信息进行了测试。结果显示
该方法在两种复杂环境实验条件下
跟踪目标的距离偏差都能保持在15 pixel以内
对单帧图像平均处理时间在20 ms以内。试验结果表明
该方法对复杂环境下的目标具有良好的跟踪效果
跟踪性能稳定
跟踪效率高
可以满足跟踪系统实时性的要求。
To optimize the tracking property of Camshift tracking method under a complex environment
the principle of constant cross ratio of internal feature pixels in tracked objects was used to improve the Camshift tracking method. By analyzing the tracked object model
the coordinate relationship among the internal feature pixels was calculated by using this method
then the internal datum's cross ratio invariant was regarded as the constraint condition of the proposed tracking method to correct the wrong tacking pixel points
and the distance ratio of internal feature pixels between two successive frames in the tracking process was taken as the judgment criteria. This proposed Camshift tracking method was used to test the video information respectively in a standard test video and in an actually shot video. Comparison results show that the distance deviation of the tracked object maintains within 15 pixel and the average handling time of single pixel is within 20 ms under the condition of two kinds of complex environment experiments. It concludes that the improved method has stable tracking property
higher tracking efficiency and good tracking results under the complex environment
and it satisfies the requirement of real-time tracking systems.
WANG Z, YANG X, XU Y, et al.. CamShift guided particle filter for visual tracking[J]. Pattern Recognition Letters, 2009, 30(4):407-413.
程帅, 孙俊喜, 曹永刚, 等. 增量深度学习目标跟踪[J]. 光学精密工程, 2015, 23(4):1161-1170. CHENG SH, SUN J X, CAO Y G, et al..Target tracking based on incremental deep learning[J].Opt. Precision Eng., 2015, 23(4):1161-1170.(in Chinese)
YIN M, ZHANG J, SUN H, et al.. Multi-cue-based CamShift guided particle filter tracking[J]. Expert Systems with Applications, 2011, 38(5):6313-6318.
李静宇, 刘艳滢, 田睿, 等. 视频监控系统中的概率模型单目标跟踪框架[J]. 光学精密工程, 2015, 23(7):2093-2099. LI J Y, LIU Y Y, TIAN R, et al..Probabilistic model single target tracking framework for video surveillance system[J].Opt. Precision Eng., 2015, 23(7):2093-2099.(in Chinese)
谭立英, 吴世臣, 韩琦琦, 等. 潜望镜式卫星光通信终端的CCD粗跟踪[J]. 光学精密工程, 2012, 20(2):270-276. TAN L Y, WU SH CH, HAN Q Q, et al..Coarse tracking of periscope type satellite optical communication terminals[J].Opt. Precision Eng., 2012, 20(2):270-276.(in Chinese)
邓丹, 吴谨, 朱磊, 等. 基于纹理抑制和连续分布估计的显著性目标检测方法[J]. 液晶与显示, 2015, 30(1):120-125. DENG D, WU J, ZHU J, et al.. Significant target detection method based on texture inhibition and continuous distribution estimation[J]. Chinese Journal of Liquid Crystals and Displays, 2015, 30(1):120-125. (in Chinese)
XU CH, GAO M, YANG Y. Accurate local region prediction by precise motion model in Kalman-particle filter[J]. Infrared and Laser Engineering, 2015, 44(11):3475-3482.
ZHANG Y Y, ZHAO X M, LI F J, et al.. Robust object tracking based on simplified codebook masked Camshift algorithm[J]. Mathematical Problems in Engineering, 2015, 376494.
NHAT V Q, KIM S H, YANG H J, et al.. Real-time face tracking with instability using a feature-based adaptive model[J]. International Journal of Control, Automation and Systems, 2015, 13(3):725-732.
修春波, 魏世安. 显著性直方图模型的Camshift跟踪方法[J]. 光学精密工程, 2015, 23(6):1749-1757. XIU CH B, WEI SH A. Camshift tracking with saliency histogram[J]. Opt. Precision Eng., 2015, 23(6):1749-1757. (in Chinese)
XIA J X, RAO W M, HUANG W, et al.. Automatic multi-vehicle tracking using video cameras:An improved Camshift approach[J]. KSCE Journal of Civil Engineering, 2013, 17(6):1462-1470.
BRADSKI G R. Computer vision face tracking for use in a perceptual user interface[J]. IEEE Trans Aerospace & Electronic Systems, 1998:214-219.
郭敬明, 何昕, 魏仲慧. 基于在线支持向量机的Mean Shift彩色图像跟踪[J]. 液晶与显示, 2014, 29(1):120-128. GUO J M, HE X, WEI ZH H. New mean shift tracking for color image based on online support vector machine[J]. Chinese Journal of Liquid Crystals and Displays, 2014, 29(1):120-128. (in Chinese)
杨一帆, 田雁, 杨帆, 等. 基于改进Mean-Shift算法的红外小目标跟踪[J]. 红外与激光工程, 2014, 43(7):2164-2169. YANG Y F, TIAN Y, YANG F, et al..Tracking of infrared small-target based on improved Mean-Shift algorithm[J]. Infrared and Laser Engineering, 2014, 43(7):2164-2169. (in Chinese)
LOU Z, JIANG G, WU C. 2D scale-adaptive tracking based on projective geometry[J]. Multimedia Tools and Applications, 2014, 72(1):905-924.
ISHⅡ I, TATEBE T, GU Q, et al.. Color-histogram-based tracking at 2000 fps[J]. Journal of Electronic Imaging, 2012, 21(1):6553-6573.
DU G, ZHANG P, WANG X. Human-manipulator interface using particle filter[J]. The Scientific World Journal, 2014:1-12.
刘明, 赵孝磊. 一种改进的Camshift目标跟踪算法[J]. 南京理工大学学报:自然科学版, 2013(5):755-760. LIU M, ZHAO X L.Target tracking based on improved Camshift algorithm[J].Journal of Nanjing University of Science and Technology, 2013(5):755-760.(in Chinese)
闫钧华, 陈少华, 艾淑芳, 等. 基于Kalman预测器的改进的CAMShift目标跟踪[J]. 中国惯性技术学报, 2014, 22(4):536-542. YAN J H, CHEN SH H, AI SH F, et al..Target tracking with improved CAMShift based on Kalman predictor[J].Journal of Chinese Inertial Technology, 2014, 22(4):536-542.(in Chinese)
董恩增, 闫胜旭, 佟吉钢. 基于主动视觉的人脸检测与跟踪算法研究[J]. 系统仿真学报, 2015, 27(5):973-979. DONG E Z, YAN SH X, TONG J G.Research about method of face detection and tracking based on active vision[J].Journal of System Simulation, 2015, 27(5):973-979.(in Chinese)
XIU C B, WEI S A, WAN R F, et al.. CamShift tracking method based on target decomposition[J]. Mathematical Problems in Engineering, 2015:1-20.
LI D, XU L, GOODMAN E D, et al.. Integrating a statistical background-foreground extraction algorithm and SVM classifier for pedestrian detection and tracking[J]. Integrated Computer-Aided Engineering, 2013, 20(3):201-216.
马颂德, 张正友.计算机视觉:计算理论与算法基础[M]. 北京:科学出版社, 1998.1. MA S D, ZHANG Z Y.Computer Vision:Computational Theory and Algorithmic Base[M]. Beijing:Science Press, 1998.1.(in Chinese)
0
浏览量
447
下载量
3
CSCD
关联资源
相关文章
相关作者
相关机构