浏览全部资源
扫码关注微信
哈尔滨工业大学 机器人技术与系统国家重点实验室,黑龙江 哈尔滨,150080
收稿日期:2016-01-08,
修回日期:2016-03-10,
网络出版日期:2016-03-30,
纸质出版日期:2016-05-25
移动端阅览
范增华, 荣伟彬, 王乐锋等. 压电驱动微点胶器的控制与实验[J]. 光学精密工程, 2016,24(5): 1042-1049
FAN Zeng-hua, RONG Wei-bin, WANG Le-feng etc. Control and experiment of micro-dispenser by piezoelectric drive[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1042-1049
范增华, 荣伟彬, 王乐锋等. 压电驱动微点胶器的控制与实验[J]. 光学精密工程, 2016,24(5): 1042-1049 DOI: 10.3788/OPE.20162405.1042.
FAN Zeng-hua, RONG Wei-bin, WANG Le-feng etc. Control and experiment of micro-dispenser by piezoelectric drive[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1042-1049 DOI: 10.3788/OPE.20162405.1042.
针对微型器件封装对非接触式微胶量的需求
研制了压电驱动微点胶器
利用压电陶瓷管挤压毛细管产生的瞬时变形实现了微胶滴的分配。分析了毛细管内的流体行为及液滴形成条件;基于多物理场耦合的方法
建立了压电微喷的三设备(压电陶瓷、毛细管、胶体)耦合模型。然后
讨论了驱动电压、喷嘴直径、胶体黏度对控制胶滴形成的影响。在构建的实验平台上
开展了控制胶滴形成的实验研究。分析了多控制参数(喷嘴直径、胶体黏度、电压幅值、脉冲宽度)的复合作用
通过匹配相应的参数实现了pL级微胶滴的非接触式分配。实验结果显示:使用黏度为30 mPas胶体
直径为10
m的喷嘴
在驱动电压幅值为50 V
脉冲宽度为37
s等参数配置下
可获得最小胶滴的体积为8.31 pL。实验结果验证了所提出方法和研制工具的有效性。
For the requirement of micro components in bonding for non-contact micro-dispensing volumes
a piezoelectric micro-dispenser was designed and fabricated. The dispensing of micro-droplets was implemented by the instantaneous deformation from the extrusion between the capillary tube and the piezoelectric ceramic tube. The fluid behavior and droplet forming conditions in the capillary were analyzed
and a coupling model including a piezoelectric ceramic
a capillary and a fluid was established by using multidiscipline coupled-field analysis method. The influences of the driving voltage
nozzle diameter and the fluid viscosity on droplet formation were analyzed. An experiment to control the droplet formation was performed in an experimental platform. The compound actions of multiple parameters (nozzle diameter
fluid viscosity
voltage magnitude and pulse width) were discussed based on experiments. The non-contact micro-dispensing of the micro droplets with a size of pL level was achieved by matching the corresponding parameters. Experimental results indicate that the minimum droplet volume of 8.31 pL is obtained when the parameters are set by the fluid viscosity of 30 mPas
the nozzle diameter of 10
m
the voltage magnitude of 50V and the pulse width of 37
s. These results verify the feasibility of the proposed method and the fabricated micro-dispenser.
YANG G, GAINES J A, NELSON B J. A supervisory wafer-level 3D microassembly system for hybrid MEMS fabrication[J]. Journal of Intelligent and Robotic Systems, 2003, 37(1):43-68.
DECHEV N, CLEGHORN W L, MILLS J K. Microassembly of 3-D microstructures using a compliant, passive microgripper[J]. Journal of Microelectromechanical Systems, 2004, 13(2):176-189.
SAHAY A, BROWN M, MUZZIO F, et al.. Automated drop-on-demand system with real-time gravimetric control for precise dosage formulation[J]. Journal of Laboratory Automation, 2013, 18(2):152-160.
CHEN X B, ZANG W J, SCHOENAU G, et al.. Off-line control of time-pressure dispensing processes for electronics packaging[J]. Electronics Packaging Manufacturing, IEEE Transactions on, 2003, 26(4):286-293.
BABIARZ A J. Advances in jetting small dots of high viscosity fluids for electronic and semiconductor packaging[J]. Global SMT & Packaging, 2006, 9:10-17.
FUGERE J P. Precision needle Dispensing-get to the Point[J]. Chip Scale Review, 2002.
NGUON B, JOUANEH M. Design and characterization of a precision fluid dispensing valve[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(3-4):251-260.
史亚莉,李福东,杨鑫,等. 用于微胶接的pL级点胶方法[J]. 光学精密工程, 2013, 20(12):2744-2750. SHI Y L, LI F D, YANG X, et al.. pL class adhesive dispensing approach for micro bonding[J]. Opt. Precision Eng., 2013, 20(12):2744-2750. (in Chinese)
史亚莉,张文生,徐德,等. 时间/压力型pL级微点胶技术[J]. 光学精密工程, 2011, 19(11):2724-2730. SHI Y L, ZHANG W SH, XU D, et al.. Time/pressure pL micro-bonding technology[J]. Opt. Precision Eng., 2011, 19(11):2724-2730. (in Chinese)
史亚莉,张正涛,徐德. 跨尺度微管微球三维半自动装配点胶系统[J]. 光学精密工程,2015,23(11):3121-3128. SHI Y L, ZHANG ZH T, XU D. 3D semi-automatic assembly and dispensing system for trans-scale parts of micro-tube and micro-sphere[J]. Opt. Precision Eng., 2015, 23(11):3121-3128. (in Chinese)
张勤,徐策,徐晨影,等. 超微量点胶方法与实验[J]. 光学精密工程, 2013, 21(8):2071-2078. ZHANG Q, XU C, XU CH Y, et al.. Approach and experiment of ultra-micro dispensing[J]. Opt. Precision Eng., 2013, 21(8):2071-2078.. (in Chinese)
ADAMSON S J, WANG D. A change in dispensing technology-jetting takes off[J]. Semiconductor Technology, 2004, 29(3):67-70.
TENG K F. Theory of pseudoplastic screen inks in orifice printing[J]. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 1989, 12(2):254-258.
KOLTAY P, ZENGERLE R. Non-contact nanoliter & picoliter liquid dispensing[C]. The 14th International Conference on Solid-State Sensors, Actuators and Microsystems, Lyon, France, 2007:165-170.
0
浏览量
414
下载量
7
CSCD
关联资源
相关文章
相关作者
相关机构