浏览全部资源
扫码关注微信
清华大学 精密仪器系 精密测试技术及仪器国家重点实验室 北京,100084
收稿日期:2015-12-11,
修回日期:2016-01-15,
纸质出版日期:2016-05-25
移动端阅览
严斌, 尹永刚, 董景新. 常温下硅微谐振加速度计零偏稳定性的提高[J]. 光学精密工程, 2016,24(5): 1050-1056
YAN Bin, YIN Yong-gang, DONG Jing-xin. Improvement of bias stability of micromechanical silicon resonant accelerometer at room temperature[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1050-1056
严斌, 尹永刚, 董景新. 常温下硅微谐振加速度计零偏稳定性的提高[J]. 光学精密工程, 2016,24(5): 1050-1056 DOI: 10.3788/OPE.20162405.1050.
YAN Bin, YIN Yong-gang, DONG Jing-xin. Improvement of bias stability of micromechanical silicon resonant accelerometer at room temperature[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1050-1056 DOI: 10.3788/OPE.20162405.1050.
考虑环境温度会影响硅微谐振加速度计(MSRA)的测量精度
本文研究了谐振梁的频率漂移及抑制方法以便提高其在常温下的零偏稳定性。针对结构热膨胀导致的应力进行了建模仿真
并根据仿真结果优化设计了一种低热应力的双端固支梁的结构来降低热膨胀系数不匹配带来的频率漂移。实验测得新结构的单梁谐振频率的温度系数从典型结构的约30 Hz/℃降为-1.5 Hz/℃
与仿真结果-1.14 Hz/℃基本一致。为了进一步提高该加速度计的零偏稳定性
设计了一种高精度测温电路用来补偿温漂
该电路测温灵敏度为96.25 mV/℃
测量噪声约为0.0002℃。实验结果表明
采用优化后的结构结合线性温度补偿的方法
可使该硅微谐振加速度计的1 h零偏稳定性在常温下达到10
μ
g以下
比改进前实验室获得的52
μ
g水平提升了80%
满足了高精度加速度测量的要求。
In consideration of the effect of ambient temperature on the precise measurement of a micromechanical silicon resonant accelerometer (MSRA)
the frequency drift of the resonant beam and suppression methods were analyzed to improve its zero-bias stability in the ambient temperature. The stress caused by structural thermal expansion was modeled and simulated and an improved structure with a lower thermal stress was designed and fabricated to reduce the frequency shift caused by non-matching of thermal expansion coefficients. The test experiments show that the temperature coefficient of resonant frequency of the single beam decreases from about 30 Hz/℃ to-1.5 Hz/℃
which is close to the simulated value of-1.14 Hz/℃. To further improve the bias stability of the MSRA
a precise temperature measurement circuit was designed to compensate the temperature shift
and the circuit shows its temperature sensitivity to be 96.25 mV/℃ and the noise to be 0.000 2℃. By proposed optimizing structure and linear temperature compensation method
the bias stability of the optimized MSRA is superior to 10
μ
g within 1 h at the room temperature
which is 80% higher than previous level of our laboratory (52
μ
g) and satisfies the requirements of high-precision acceleration measurement.
HOPKINS R, MIOLA J, SETTERLUND R, et al.. The silicon oscillating accelerometer:a high-performance MEMS accelerometer for precision navigation and strategic guidance applications[C]. Proceedings of the 61st Annual Meeting of The Institute of Navigation, Cambridge, MA:NTM, 2005:1043-1052.
徐永青,杨拥军. 硅MEMS器件加工技术及展望[J]. 微纳电子技术,2010,47(7):425-431. XU Y Q, YANG Y J. Processing technology and development of silicon MEMS[J]. MEMS Device& Technology, 2010, 47(7):425-431. (in Chinese)
王帆,董景新,赵淑明,等. 硅微振梁式加速度计抗温漂的微结构及工艺设计[J]. 中国惯性技术学报,2014,22(2):227-232. WANG F, DONG J X, ZHAO SH M, et al.. Temperature insensitive design of MEMS resonant accelerometer[J]. Journal of Chinese Inertial Technology, 2014, 22(2):227-232. (in Chinese)
HUANG L, YANG H, GAO Y, et al.. Design and implementation of a micromechanical silicon resonant accelerometer[J]. Sensors, 2013, 13(11):15785-15804.
石然,裘安萍,苏岩. 硅微谐振式加速度计的实现及性能测试[J]. 光学精密工程,2010,18(12):2583-2589. SHI R, QIU A P, SU Y. Implementation and experiments of micromechanical differential silicon resonant accelerometer[J]. Opt. Precision Eng., 2010, 18(12):2583-2589. (in Chinese)
DONG J H, QIU A P, SHI R. Temperature influence mechanism of micromechanical silicon oscillating accelerometer[C]. Power Engineering and Automation Conference (PEAM), Wuhan, P.R. China:IEEE, 2011:385-389.
LIU J, HUANG Q A, SHANG J, et al.. A new process to fabricate cavities in Pyrex7740 glass for high density packaging of micro-system[C]. International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP 2008), Shanghai, P.R. China:IEEE, 2008:1-4.
王巍,王岩,庄海涵,等. 硅微谐振加速度计的温度特性[J]. 中国惯性技术学报,2013,21(2):255-258. WANG W, WANG Y, ZHUANG H H, et al.. Temperature characteristic of silicon resonant accelerometer[J]. Journal of Chinese Inertial Technology, 2013, 21(2):255-258. (in Chinese)
王帆,董景新,赵淑明. 硅微振梁式加速度计的温度检测及闭环控制[J]. 光学精密工程,2014,22(6):1590-1597. WANG F, DONG J X, ZHAO SH M. Temperature measurement and close-loop control of silicon resonant accelerometer[J]. Opt. Precision Eng., 2014, 22(6):1590-1597. (in Chinese)
王岩,张玲,邢朝洋. 硅微谐振加速度计高精度相位闭环控制系统设计与实现[J]. 中国惯性技术学报,2014,22(5):688-692. WANG Y, ZHANG L, XING CH Y. Design and implement of high precision phase closed-loop control system for silicon resonant accelerometer[J]. Journal of Chinese Inertial Technology, 2014, 22(5):688-692. (in Chinese)
裘安萍,董金虎. 硅微谐振式加速度计的温度效应及补偿[J]. 纳米技术与精密工程,2012,10(3):215-219. QIU A P, DONG J H. Temperature effect and compensation of silicon resonant accelerometer[J]. Nanotechnology & Precision Engineering, 2012, 10(3):215-219. (in Chinese)
董景新,曹宇,万蔡辛,等. 硅微谐振式加速度计2种谐振结构比较[J]. 清华大学学报(自然科学版),2010,50(11):1825-1828. DONG J X, CAO Y, WAN C X, et al.. Comparison of two resonant structures in silicon oscillating accelerometers[J]. Journal of Tsinghua University(Sc & Tech), 2010, 50(11):1825-1828. (in Chinese)
MichelN S. Force multiplier in a microelectromechanical silicon oscillating accelerometer [D]. Cambridge:Massachusetts Institute of Technology, 2000.
石然,姜劭栋,裘安萍,等. 微杠杆在硅微谐振式加速度计中的应用[J]. 光学精密工程,2011,19(4):805-811. SHI R, JIANG SH D, QIU A P, et al.. Implementation and experiments of micromechanical differential silicon resonant accelerometer[J]. Opt. Precision Eng., 2011, 19(4):805-811. (in Chinese)
0
浏览量
745
下载量
4
CSCD
关联资源
相关文章
相关作者
相关机构