浏览全部资源
扫码关注微信
大连理工大学 辽宁省微纳米及系统重点实验室,辽宁 大连,116024
收稿日期:2015-12-13,
修回日期:2016-01-20,
纸质出版日期:2016-05-25
移动端阅览
刘冲, 周利杰, 梁超等. 面向即时检测芯片超声波精密键合的熔接结构及工艺参数[J]. 光学精密工程, 2016,24(5): 1057-1064
LIU Chong, ZHOU Li-jie, LIANG Chao etc. Joint structure and processing parameters of ultrasonic precision bonding for point-of-care testing chips[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1057-1064
刘冲, 周利杰, 梁超等. 面向即时检测芯片超声波精密键合的熔接结构及工艺参数[J]. 光学精密工程, 2016,24(5): 1057-1064 DOI: 10.3788/OPE.20162405.1057.
LIU Chong, ZHOU Li-jie, LIANG Chao etc. Joint structure and processing parameters of ultrasonic precision bonding for point-of-care testing chips[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1057-1064 DOI: 10.3788/OPE.20162405.1057.
针对芯片即时检测(POCT)芯片对键合精度、键合强度、生产效率和生物兼容性的要求
基于超声波键合技术设计了结构化的导能筋布置形式和阻熔导能接头结构。研究了超声波键合时间和键合压力对微通道高度保持性能的影响
确定了精密超声波键合工艺参数。利用高精度显微镜、拉伸试验机和羊全血分别对键合后芯片的微通道高度、键合强度、微通道密闭性以及液体自驱动性能进行了测试。结果表明:所设计的导能筋布置形式合理可靠;利于芯片各功能的集成
阻熔导能接头结构能够较精确地控制键合后微通道的高度
键合精度达到2
μ
m;全血驱动时间的极差在20 s以内;所确定的键合工艺参数能够实现高强度的键合
键合强度不小于2.5 MPa。该熔接结构及工艺参数具有键合精度高、键合强度高、生物兼容性好和熔接均匀等优点
可应用于医用POCT芯片产品中。
For the requirements of Point-Of-Care Testing(POCT) chips for bonding precision
bonding strength
productivity and biological compatibility
this paper designs a structured energy director and a weld limited joint structure based on ultrasonic bonding. The influence of ultrasonic bonding time and bonding pressure on microchannel's height maintenance was researched
and the optimum processing parameters of precision ultrasonic bonding were determined. After ultrasonic bonding
a high precision microscope
a tensile testing machine and the whole sheep blood were applied to test the microchannel height
bonding strength
microchannel leakproofness and the whole blood driving performance of ultrasonically bonded POCT chips respectively. Experimental results demonstrate that the structured energy director is rational
reliable and easy to integrate each functions. The weld limited joint structure can control the height of microchannel accurately during ultrasonic bonding
the bonding precision of the microchannel is 2
μ
m
and the time range of whole blood driving test is less than 20 s. Moreover
the optimum processing parameters are conductive the realization of the high bonding strength more than 2.5 MPa. It concludes that the joint structure and processing parameters have the advantages of high bonding precision
high bonding strength
biological compatibility and uniform welding for POCT chips
and are suitable for the application to medical POCT chips.
李晓琼,杨春华,潘邵武,等. 面向POCT应用的微流控芯片技术综述[J]. 世界复合医学,2015,1(1):30-37. LI X Q, YANG CH H, PAN SH W, et al.. Microfluidic Lab-on-a-chip technologies for point-of-care testing system[J]. World Journal of Complex Medicine, 2015, 1(1):30-37. (in Chinese)
唐延辉,董成霞,周延美. 检验医学的新领域-POCT[J]. 中国医学创新,2012,9(23):153-154. TANG Y H, DONG CH X, ZHOU Y M. New field for medical test-POCT[J]. Medical Innoration of China, 2012, 9(23):153-154. (in Chinese)
范建华,邓永波,宣明,等. PC微流控芯片黏接筋与溶剂的协同辅助键合[J]. 光学精密工程,2015,23(3):708-713. FAN J H, DENG Y B, XUAN M, et al.. Synergistic bonding process of solvent and tendon for PC-based microfluidic chips[J]. Opt. Precision Eng., 2015, 23(3):708-713. (in Chinese)
WANG X D, JIN J, LI X, et al.. Low-pressure thermal bonding[J]. Microelectronic Engineering, 2011, 88:2427-2430.
LI X, WU N Q, ROJANASAKUL Y, et al.. Selective stamp bonding of PDMS microfluidic devices to polymer substrates for biological applications[J]. Sensors and Actuators, 2013, 193:186-192.
王晓东,郑英松,张宗波,等. 聚合物微流控芯片超声波微熔融键合方法[J]. 纳米技术与精密工程,2011,9(3):270-274. WANG X D, ZHENG Y S, ZHANG Z B, et al.. Ultrasonic micro-melting bonding method of polymer microfluidic chips[J]. Nanotechnology and Precision Engineering, 2011, 9(3):270-274. (in Chinese)
罗怡,何盛强,王晓东. 聚合物多层微流控芯片超声波键合界面温度研究[J]. 材料科学与工艺,2012,20(1):88-92. LUO Y, HE SH Q, WANG X D. Interfacial temperature study of multi-layer ultrasonic bonding for polymer microfluidic chip[J]. Materials Science & Technology, 2012, 20(1):88-92. (in Chinese)
韦鹤,王晓东,刘冲,等. 塑料微流控芯片的超声波焊接键合的仿真[J]. 中国机械工程,2005,16(增):82-84. WEI H, WANG X D, LIU CH. Bonding simulation of ultrasonic welding method for plastic microfluidic chip[J]. China Mechanical Engineering, 2005, 16:82-84. (in Chinese)
TRUCKENMULLER R, CHENG Y, AHRENS R, et al.. Micro ultrasonic welding:joining of chemically inert polymer microparts for single material fluidic components and systems[J]. Microsystem Technologies, 2006, 12(10-11):1027-1029.
张宗波,罗怡,王晓东,等. 基于局部溶解性激活的聚合物微流控芯片超声波键合[J]. 纳米技术与精密工程,2011,9(4):345-349. ZHANG Z B, L Y, WANG X D, et al.. A local solubility activation for ultrasonic bonding of polymer microfluidic chips[J]. Nanotechnology and Precision Engineering, 2011, 9(4):345-349. (in Chinese)
罗怡,张苗苗,孙屹博,等. PC微流控芯片黏接筋与溶剂的协同辅助键合[J]. 光学精密工程,2011,19(4):754-761. LUO Y, ZHANG M M, SUN Y B, et al.. Synergistic bonding process of solvent and tendon for PC-based microfluidic chips[J]. Opt. Precision Eng., 2011, 19(4):754-761. (in Chinese)
JAKEWAY S C, DE M A J, RUSSEL E L. Miniaturized total analysis systems for biological analysis[J]. Fresenius' Journal of Analytical Chemistry, 2000, 366(6-7):525-539.
CHUAH Y K, CHIEN L H J, CHANG B C, et al.. Effects of the shape of the energy director on far-field ultrasonic welding of thermoplastics[J]. Polymer Engineering & Science, 2000, 40(1):157-167.
JIANG J, ZHAN J, YUE W, et al.. A single low-cost microfabrication approach for polymethylmethacrylate, polystyrene, polycarbonate and polysulfone based microdevices[J]. RSC Advances, 2015, 5(45):36036-36043.
MUKHOPADHYAY S, BANERJEE J P, ROY S S, et al.. Effects of liquid viscosity, surface wettability and channel geometry on capillary flow in SU8 based microfluidic devices[J]. International Journal of Adhesion and Adhesives, 2013, 42:30-35.
ZIMMERMANN M, SCHMID H, HUNZIKER P, et al.. Capillary pumps for autonomous capillary systems[J]. Lab on a Chip, 2007, 7(1):119-125.
范建华,邓永波,宣明,等. CD_like全血分析芯片内压缩空气的定量泵送[J]. 光学精密工程,2014,22(10):2733-2739. FAN J H, DENG Y B, XUAN M, et al.. Pneumatic-pumping metering in CD-like microfluidic chip for whole blood analysis[J]. Opt. Precision Eng., 2014, 22(10):2733-2739. (in Chinese)
0
浏览量
255
下载量
1
CSCD
关联资源
相关文章
相关作者
相关机构