浏览全部资源
扫码关注微信
1. 上海应用技术大学 理学院 上海,201418
2. 立命馆大学 微系统系 京都,日本,525-8577
收稿日期:2016-01-10,
修回日期:2016-02-15,
纸质出版日期:2016-05-25
移动端阅览
李以贵, 黄远, 颜平等. 利用体块PZT制备膜片式压电微泵[J]. 光学精密工程, 2016,24(5): 1072-1079
LI Yi-gui, HUANG Yuan, YAN Ping etc. Fabrication of micro diaphragm piezoelectric pump by using bulk PZT[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1072-1079
李以贵, 黄远, 颜平等. 利用体块PZT制备膜片式压电微泵[J]. 光学精密工程, 2016,24(5): 1072-1079 DOI: 10.3788/OPE.20162405.1072.
LI Yi-gui, HUANG Yuan, YAN Ping etc. Fabrication of micro diaphragm piezoelectric pump by using bulk PZT[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1072-1079 DOI: 10.3788/OPE.20162405.1072.
利用锆钛酸铅(PZT)的逆压电效应
设计并制备了膜片式压电微泵。通过将电能转换为机械能
实现了液体的微流体控制。微泵由微驱动器与单向微阀两部分组成;微驱动器主要为液体流动提供驱动力
单向微阀则用于精确控制液体的流动方向。通过对PZT-Si膜片的位移量、位移形状的仿真分析
确定了微驱动器的设计尺寸
并估算其液体驱动性能。利用共晶键合工艺、研磨减薄工艺、硅深反应离子刻蚀工艺和准分子激光加工工艺等制备出了微驱动器和单向微阀。最后
设计了驱动测试实验
检测了微泵的液体驱动性能。测试结果表明:所制备的膜片式压电微泵驱动的谐振频率约为70 kHz
能驱动微米量级的液体位移或运动。当微泵驱动电压为30 V
p-p
、频率为600 Hz时
液体的驱动流速约为65
μ
L/min。该微泵具有体积小
线性度好等特点。
On the basis of the inverse piezoelectric effect of the PZT(Pb based Lanthanum doped Zirconate Titanate)
a micro diaphragm piezoelectric pump was designed and fabricated. By converting the electrical energy into mechanical energy
the microfluidic control of liquid was realized. The micro pump was consisted of two parts
a micro actuator and a micro check valve. The micro actuator was mainly used to provide a driving force for the liquid
and the micro check valve was taken to control the flow direction of the liquid precisely. With the simulation analysis of the displacement and shape of the PZT-Si diaphragm
the design size of micro actuator was determined and the driving liquid performance of the actuator was estimated. By using eutectic bonding
grinding thinning
ICP-RIE(Inductively Coupled Plasma-Reactive Ion Etching)
excimer laser processing and other micro fabrication processes
the micro actuator and the micro check valve were fabricated
respectively. A driven testing of the micro pump was carried out. The experimental results show that the resonance frequency is about 70 kHz
which can drive the displacement and movement of liquid with a micrometer volume. When the driving signal is 30 V
p-p
at the frequency of 600 Hz
the drive flow rate of liquid is about 65
μ
L/min. The fabricated micro pump is characterized by a small volume and good linearity.
刘文明, 李立, 任丽, 等. 微流控细胞芯片生命分析应用多元化[J]. 分析化学,2012,40(1):24-31. LIU W M, LI L, REN L, et al.. Diversification of microfluidic applications in cell-based bioanalysis[J]. Fenxi Huaxue, 2012, 40(1):24-31. (in Chinese)
顾雯雯. 微流控细胞芯片LED诱导透射式荧光检测微系统[J]. 光学精密工程, 2014,22(8):2159-2165. GU W W. LED induced transmitted fluorecence detector integrated in microfluidic cell chip[J].Opt. Precision Eng., 2014, 22(8):2159-2165. (in Chinese)
张雯, 钱金雄, 肖彦革, 等. 微流控芯片荧光检测系统研究进展[J]. 理化检验, 2011,47(12):1495-1500. ZHANG W, QIAN J X, XIAO Y G, et at.. Recent progress of fluorescence detection systems of microfluidic chip[J]. Chem. Anal., 2011, 47(12):1495-1500. (in Chinese)
耿鑫, 侯丽雅, 杨眉, 等. 微流体数字化技术制备基因芯片微阵列[J]. 光学精密工程,2011,19(6):1344-1452. GENG X, HOU L Y, YANG M, et al.. Preparation of genechip microarrays using microfluid digitalization[J]. Opt. Precision Eng., 2011, 19(6):1344-1452. (in Chinese)
付相庭, 章安良. 声表面波跨越式输运数字微流体[J]. 压电与声光,2013,35(6):775-778. FU X T, ZHANG AN L. Surface acoustic wave transporting digital microfluid with leap-type[J]. Piezoelectrics & Acoustooptics, 2013, 35(6):775-778. (in Chinese)
WANG J Q, AW K C, MCDAID A, et al.. An efficiency improved diffuser with extended sidewall for application in valveless micropump[J]. Heat & Mass Transfer, 2015:1-11.
纪夏夏, 沈丹丹, 谭秋林, 等. 电渗微泵的生理溶液渗透特性研究[J]. 传感技术学报, 2014,27(11):1447-1450. JI X X, SHEN D D, TAN Q L, et al.. Research on osmosis of electroosmotic micropump for physiological solution[J].Chinese Journal of Sensors and Actuators,2014, 27(11):1447-1450. (in Chinese)
徐莹, 胡正添, 郭淼. 基于微生物代谢成分的电化学多参数检测平台微泵设计[J]. 传感技术学报, 2015,28(1):1-8. XU Y, HU ZH T, GUO M. Design of micropump for parallel multi-parameter detection of microbial metabolic components based on electrochemical platform[J]. Chinese Journal of Sensors and Actuators,2015, 28(1):1-8. (in Chinese)
LIU CH, WANG L, LI J M, et al.. Evaporation characteristics of micropores in biomimetic micropump[J]. Micro & Nano Letters, 2014, 9(1):41-45.
YE W X, ZHANG W, WANG CH, et al.. Travelling wave magnetic valveless micropump driven by rotating integrated magnetic arrays[J]. Micro & Nano Letters, 2014, 9(4):232-234.
刘春波, 田勇, 辻知宏, 等. 基于液晶引流效应的全新微流体驱动方式[J]. 机械工程学报,2012,48(16):122-129. LIU CH B, TIAN Y, TSUJI T, et al.. New microfludic driving method based on liquid crystalline backflow effect[J]. Journal of Mechanical Engineering, 2012, 48(16):122-129. (in Chinese)
沙菁菁, 侯丽雅, 章维一, 等. 微流体系统驱动技术的研究进展[J]. 微纳电子技术,2006,12:586-591. SHA J J, HOU L Y, ZH W Y, et al.. Research on the driving-methods of micro-fluidic system[J]. Micronanoelectronic Technology, 2006, 12:586-591. (in Chinese)
黄健萌, 黄靖. 压电驱动微悬臂梁与基底粗糙面间多次接触分析[J]. 农业机械学报, 2015,46(9):368-372. HUANG J M, HUANG J. Multiple-contact analysis between microcantilever and substrate rough surface driven by piezoelectric[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(9):368-372. (in Chinese)
沈燕虎, 苏江, 杨志刚, 等. 压电驱动式振动给料器的设计与试验[J]. 光学精密工程,2014,22(7):1828-1833. SHEN Y H, SU J, YANG ZH G, et al.. Design and experiment of piezoelectric-drive vibratory feeder[J]. Opt. Precision Eng., 2014, 22(7):1828-1833. (in Chinese)
张蕊华, 陈冠锋. 压电驱动精密流量阀动态特性仿真分析[J]. 机械设计与制造, 2015,2:185-188. ZHANG R H, CHEN G F. Dynamic characteristic simulation analysis on the piezo-driven precision flow control valve[J].Machinery Design & Manufacture, 2015, 2:185-188. (in Chinese)
张芷菁, 王葳, 陈信元. 胰岛素注射用压电微泵的性能研究[J]. 中国医疗器械杂志,2015, 39(1):64-67. ZHANG ZH J, WANG W, CHENG X Y. Study on the performance of piezoelectric micro pump for insulin injection[J]. Chinese Journal of Medical Instrumentation, 2015, 39(1):64-67. (in Chinese)
高晓光, 杜立群, 吕岩. PZT压电薄膜无阀微泵[J]. 功能材料与器件学报,2008,14(4):793-798. GAO X G, DU L Q, LV Y. PZT piezoelectric thin film valveless micropump[J]. Journal of Functional Materials and Devices, 2008, 14(4):793-798. (in Chinese)
刘国君, 程光明, 杨志刚. 一种压电式精密输液微泵的试验研究[J]. 光学精密工程,2006,14(4):612-616. LIU G J, CHENG G M, YANG ZH G. Experimental research on a piezoelectric micro-pump for precision pumping[J]. Opt. Precision Eng., 2006, 14(4):612-616. (in Chinese)
杜立群, 高晓光, 董维杰, 等. PZT压电薄膜无阀微泵的制备工艺及实验研究[J]. 压电与声光,2008,30(4):492-494. DU L Q, GAO X G, DONG W J, et al.. Study on fabrication process and experiment of valveless piezoelectric micropump based on PZT thin film[J]. Piezoelectrics & Acoustooptics, 2008, 30(4):492-494. (in Chinese)
王志斌, 李克武, 张瑞, 等. 基于铌酸锂制作光弹调制器用压电驱动器[J]. 光学精密工程,2015,23(1):63-69. WANG ZH B, LI K W, ZHANG R, et al.. Fabrication of piezoelectric actuator for photoelastic modulator based on lithium niobate[J].Opt. Precision Eng., 2015, 23(1):63-69. (in Chinese)
0
浏览量
499
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构