浏览全部资源
扫码关注微信
浙江师范大学 精密机械研究所,浙江 金华,321004
收稿日期:2015-12-05,
修回日期:2016-01-10,
纸质出版日期:2016-05-25
移动端阅览
阚君武, 张肖逸, 王淑云等. 直激式压电风能捕获器的性能分析与实验[J]. 光学精密工程, 2016,24(5): 1087-1092
KAN Jun-wu, ZHANG Xiao-yi, WANG Shu-yun etc. Performance analysis and test of blowing-type PZT wind energy harvester[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1087-1092
阚君武, 张肖逸, 王淑云等. 直激式压电风能捕获器的性能分析与实验[J]. 光学精密工程, 2016,24(5): 1087-1092 DOI: 10.3788/OPE.20162405.1087.
KAN Jun-wu, ZHANG Xiao-yi, WANG Shu-yun etc. Performance analysis and test of blowing-type PZT wind energy harvester[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1087-1092 DOI: 10.3788/OPE.20162405.1087.
提出一种由压电梁及其端部附加质量构成的直激式压电风能捕获器。在考虑了压电振子静平衡变形的基础上
根据涡激振动理论建立了柔性压电振子的自激振动理论模型并进行了仿真分析
获得了压电梁厚度比、附加质量及风速对其发电性能的影响规律。结果表明
存在最佳的压电梁厚度比使输出电压、电能及功率最大
电压/电能/功率所对应的最佳厚度比分别为0.5/0.65/0.65。其它参数确定时
存在最佳风速/附加质量使输出电压最大
且最佳风速随附加质量增加而降低、最佳质量随风速增加而降低。制作了风能捕获器样机并进行了试验测试
风速为4.8/7.2/10 m/s时
对应的最佳附加质量及最大电压分别为15/11/7 g和1.9/3.94/6.18 V;风速为10 m/s时
10 g附加质量下的输出电压为0/20 g附加质量下的4.1/1.2倍。结果证明根据实际风速范围确定合理的附加质量可提高发电能力。
A blowing-type PZT wind energy harvester consisting of a piezo-cantilever and a proof mass on its free-end was presented. By considering the static balance deformation of the piezoelectric vibrator
an analysis model of a flexible piezoelectric vibrator was established and simulated on the basis of the theory of vortex-induced vibration. Then
the influences of thickness ratios
wind speeds and proof masses on the electrical energy generation were obtained. The results show that there are individual optimal thickness ratios for the generated voltage
energy and the output power to achieve peaks
and the optimal thickness ratios for the generated voltage/energy/power are 0.5/0.65/0.65
respectively. Under other parameters given
there are optimal wind speeds and optimal proof masses for the voltage to achieve their peaks
and the optimal wind speed (proof mass) decreases with the increasing of proof mass (wind speed). A PZT wind energy harvester was fabricated and tested under different proof masses and wind speeds. The experiment results show that the achieved optimal proof masses and optimal voltages under wind speeds of 4.8/7.2/10 m/s are 15/11/7g and 1.9/3.94/6.18 V respectively. In the case of wind speed of 10 m/s
the generated voltages under 10 g proof mass is 4.1/1.2 times those under 0/20g proof mass respectively. It concludes that a reasonable proof mass is helpful for a PZT wind energy harvester to generate more energies.
BEEBY S P, ZHU D. Vibration energy harvesting:fabrication, miniaturisation and applications[J]. Proc. of SPIE, 2015, 9517:951703.
MATIKO J W, GRABHAM N J, BEEBY S P, et al.. Review of the application of energy harvesting in buildings[J]. Meas. Sci. Technol., 2014, 25:012002-1-25.
ELVIN N, ERTURK A. Advances in Energy Harvesting Methods[M]. New York:Springer-Verlag New York Inc., 2013.
阚君武, 李洋, 王淑云,等. 旋转磁铁数量对压电俘能器输出电压的影响[J]. 光学精密工程,2014,22(7):1864-1870. KAN J W, LI Y, WANG SH Y, et al.. Influence of NRMs on energy-generation performance of piezoelectric harvesters[J].Opt. Precision Eng., 2014,22(7):1864-1870.(in Chinese)
DELNAVAZ A,VOIX J. Flexible piezoelectric energy harvesting from jaw movements[J]. Smart Materials and Structures, 2014, 23:105020(8pp).
DAQAQ M F, MASANA R, ERTURK A, et al.. On the role of nonlinearities in vibratory energy harvesting:a critical review and discussion[J]. ASME Appl. Mech. Rev., 2014, 66(4):040801.
TRUITT A, MAHMOODI S N. A review on active wind energy harvesting designs[J]. International Journal of Precision Engineering and Manufacturing,2013, 14(9):1667-1675.
LUONG H T, GOO N S. Use of a magnetic force exciter to vibrate a piezocomposite generating element in a small-scale windmill[J]. Smart Materials and Structures,2012,21(2):025017.
SKOW E, KOONTZ Z, CUNEFARE K, et al.. Hydraulic pressure energy harvester enhanced by Helmholtz resonator[C]. Proc. of SPIE,2015, 9431:943104.
SIVADAS V, WICKENHEISER A M. A study of several vortex-induced vibration techniques for piezoelectric wind energy harvesting[C]. Proc. of SPIE, 2011, 7977:79770F.
HOBECK J D, GESLAIN D, INMAN D J. The dual cantilever flutter phenomenon:a novel energy harvesting method[C]. Proc. of SPIE, 2014,9061:906113.
阚君武, 唐可洪,王淑云,等. 压电悬臂梁发电装置的建模与仿真分析[J]. 光学精密工程,2008.16(1):71-75. KAN J W, TANG K H, WANG SH Y, et al.. Modeling and simulation of piezoelectric cantilever generators[J].Opt. Precision Eng., 2008,16(1):71-75. (in Chinese)
SHIGEHIKO S, NAKAMURA T, INADA F, et al.. Flow induced Vibrations:Classifications and Lessons from Practical Experiences [M]. London:Academic Press. 2014.
0
浏览量
370
下载量
6
CSCD
关联资源
相关文章
相关作者
相关机构