浏览全部资源
扫码关注微信
中国科学院 长春光学精密机械与物理研究所空间机器人系统创新研究室,吉林 长春,130033
收稿日期:2015-11-12,
修回日期:2015-12-17,
纸质出版日期:2016-05-25
移动端阅览
韩春杨, 徐振邦, 吴清文等. 大型光学载荷次镜调整机构优化设计及误差分配[J]. 光学精密工程, 2016,24(5): 1093-1103
HAN Chun-yang, XU Zhen-bang, WU Qing-wen etc. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1093-1103
韩春杨, 徐振邦, 吴清文等. 大型光学载荷次镜调整机构优化设计及误差分配[J]. 光学精密工程, 2016,24(5): 1093-1103 DOI: 10.3788/OPE.20162405.1093.
HAN Chun-yang, XU Zhen-bang, WU Qing-wen etc. Optimization design and error distribution for secondary mirror adjusting mechanism of large optical payload[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1093-1103 DOI: 10.3788/OPE.20162405.1093.
设计了一种用于大型光学载荷次镜在轨位姿精密调整的Hexapod型平台机构
并对其进行构型参数优化以及各支撑杆和上下铰点误差限的最优分配。建立了Hexapod平台机构运动学模型和静柔度模型
分析了主要结构参数对机构性能的影响。按照次镜精调机构性能要求
提出了定位精度指标和抗变形指标
建立了以构型参数为变量的优化目标函数
并利用遗传算法对两个单目标函数进行优化。利用加权分配法构造统一约束目标函数
利用遗传算法对其进行多目标优化。然后
建立非线性最优误差分配模型
对各支撑杆和上下铰点进行误差分配。最后
通过对原理样机性能指标的测试验证了上述研究方法的效果。研究结果表明:优化前后动平台定位精度提高了8.3%
抗变形能力提高了62.5%
铰点误差限由2.7
μ
m提高到6.3
μ
m
支撑杆误差限由1.3
μ
m提高到3.2
μ
m。另外
实验测得
Z
轴相对定位精度为0.6%
静刚度达到41.14 N/
μ
m。本研究提高了次镜精调机构的定位精度和静载抗变形能力
有助于缩短设计、加工周期
节约设计、加工成本。
A Hexapod precision positioning platform called the Secondary Mirror Adjustment Mechanism(SMAM) was designed to precisely adjust the second mirror of a large optical payload. The structure configurations were optimized based on the multi-objective function
and the errors of each strut and the upper (lower) hinges were distributed by the optimization algorithm. A kinematic model and a static flexibility model for the Hexapod platform were established
and the influences of main structure parameters on the mechanism performance were analyzed. Then
the positioning accuracy and anti-deformation indexes were put forward. By using the structural parameters as variables
the optimization functions were established
and two single-objective functions were optimized by the genetic algorithm. At the same time
a unified constraint function of weight factor was constructed
and the multi-objective function was also optimized by the genetic algorithm. Afterwards
a nonlinear optimized error distribution model was established
and it was used to distribute the errors for each strut and the upper (lower) hinges. Finally
by testing the performance indexes of a prototype
the efficiency of the proposed method was verified. The research results after optimization show that the positioning accuracy and the anti-deformation capacity are improved by 8.3% and 62.5%
respectively. The upper and lower hinge error bounds increase from 2.7
μ
m to 6.3
μ
m
and each strut error bound increases from 1.3
μ
m to 3.2
μ
m. Moreover
the relative positing accuracy and the static stiffness of
Z
axis are 0.6% and 41.14 N/
μ
m
respectively. The research in this paper improves the positioning accuracy and anti-deformation ability
and saves the design cycles and processing costs.
杨剑锋,徐振邦,吴清文,等. 空间光学载荷六维隔振系统设计及特性分析[J]. 光学精密工程, 2015, 23(5):143-153. YANG J F, XU ZH B, WU Q W, et al..Design of six dimensional vibration isolation system for space optical payload[J].Opt.Precision Eng., 2015, 23(5):143-153.(in Chinese)
贾学志, 王栋, 张雷, 等. 轻型空间相机调焦机构的优化设计与精度试验[J]. 光学精密工程, 2011, 19(8):1824-1831. JIA X ZH, WANG D, ZHANG,et al..Optimizing design and precision experiment of focusing mechanism in lightweight space camera[J].Opt.Precision Eng., 2011, 19(8):1824-1831.(in Chinese)
GEIJO E M, CASALTA J M, CANCHADO M, et al.. VISTA secondary mirror drive performance and test results[C].Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2006:627338-627338-10.
DOUGLAS R N, RYAN S, JAKE D, et al.. Baseline design of the LSST hexapods and rotator[J].SPIE,2014,9151:91512B-1-16.
SEBRING T A, DUNHAM E W, MILLIS R L. The discovery channel telescope:a wide-field telescope in northern arizona[C].Astronomical Telescopes and Instrumentation. International Society for Optics and Photonics, 2004:658-666.
CASA LTA J M, ARINO J, CANCH ADO M, et al..The performances of GTC secondary mirror drive unit[J].SPIE, 2004, 5495:507-517.
徐刚, 杨世模, 龚雨兵. 大型光学望远镜副镜位姿精调机构的优化设计[J]. 光学精密工程, 2008, 16(7):1181. XU G, YANG SH M, GONG Y B. Optimal design of pose and position fine tuning apparatus for secondary mirror in large optical telescope[J]. Opt.Precision Eng., 2008, 16(7):1181. (in Chinese)
王永, 姚太克, 周烽, 等. 望远镜副镜的三自由度并联支撑构型研究与运动分析[J]. 光学精密工程, 2013, 21(11):2860-2869. WANG Y, YAO T K, ZHOU F, et al.. Type synthesis of 3-DOF parallel support system for telescope secondary mirror[J]. Opt.Precision Eng., 2013, 21(11):2860-2869. (in Chinese)
MERLET J. Parallel robots, second ed[M].Springer-Verlag New York Inc, 2006.
VON DAAKE A, VETTER C, BÖHM E, et al..Contribution to calibration of hexapod positioning units in industrial environment[J].Precision Engineering, 2013, 37(1):73-80.
HUANG T, DEREK G. A general and novel approach for parameter identification of 6-DOF parallel kinematic machines[J]. Mechanism and Machine Theory, 2005, 40(2):219-239.
ARSENAULT M, BOUDREAU R. Synthesis of planar parallel mechanisms while considering workspace, dexterity, stiffness and singularity avoidance[J]. Journal of Mechanical Design, 2006, 128(1):69-78.
SONG J, MOU J I, KING C. Parallel kinematic machine positioning accuracy assessment and improvement[J]. Journal of Manufacturing Processes, 2000, 2(1):48-58.
YAO R, TANG X, LI T, et al..Error analysis and distribution of 6-SPS and 6-PSS reconfigurable parallel manipulators[J]. Tsinghua Science & Technology, 2010, 15(5):547-554.
SU Y X, DUAN B Y, ZHENG C H. Genetic design of kinematically optimal fine tuning Stewart platform for large spherical radio telescope[J]. Mechatronics, 2001, 11(7):821-835.
段学超, 仇原鹰, 段宝岩. 基于自适应遗传算法的Stewart平台结构双目标优化设计[J]. 计算力学学报, 2007, 23(6):718-721. DUNA X CH,CHOU Y Y, DUAN B Y. Bi-objective optimization of structural parameters of the Stewart platform based on adaptive genetic algorithm[J].Chinese Journal of Computational Mechanics, 2007, 23(6):718-721.(in Chinese)
JAEHOON L,JOSEPH D, KENNETH H H. A practical quality index based on the octahedral manipulator[J].J.of Robotics Research, 1998,17(10):1081-1090.
MERLET J P. Jacobian, manipulability, condition number, and accuracy of parallel robots[J]. Journal of Mechanical Design, 2006, 128(1):199-206.
ZHANG D, WANG L, LANG S Y. Parallel kinematic machines:design, analysis and simulation in an integrated virtual environment[J].Journal of Mechanical Design, 2005, 127(4):580-588.
黄真,赵永生,赵铁石. 高等空间机构学[M]. 北京:高等教育出版社,2006. HUANG ZH, ZHAO Y SH, ZHAO T SH. Advanced Spatial Mechanism [M].Beijing:Chinese High Education Press,2006.(in Chinese)
SNEED R C, KEAS P J. Error reduction and modeling for hexapod positioners of secondary mirrors for large ground-based telescopes[C].SPIE Astronomical Telescopes Instrumentation. International Society for Optics and Photonics, 2014:915020-915020-14.
张景旭,安其昌,李剑锋,等. 基于机构条件数的30 m望远镜三镜Stewart平台[J]. 光学精密工程,2014,22(4):890-897. ZHANG J X, AN Q CH, LI J F, et al.. Third mirror Stewart platform of TMT based on mechanism condition number[J].Opt.Precision Eng., 2014,22(4):890-897.(in Chinese)
CHUNSHEN L. Precision design of modular parallel kinematic machines[J]. Tool Engineering, 2007, 41(8):38.
SNEED R C, CASH M F, CHAMBERS T S, et al.. Six degrees of freedom, sub-micrometer positioning system for secondary mirrors[C].SPIE Astronomical Telescopes+Instrumentation. International Society for Optics and Photonics, 2010:77332R-77332R-11.
0
浏览量
659
下载量
8
CSCD
关联资源
相关文章
相关作者
相关机构