浏览全部资源
扫码关注微信
沈阳工业大学 机械工程学院,辽宁 沈阳,110870
收稿日期:2015-10-16,
修回日期:2016-01-11,
纸质出版日期:2016-05-25
移动端阅览
刘慧芳, 王汉玉, 王洁等. 精密磁致伸缩致动器的动态非线性多场耦合建模[J]. 光学精密工程, 2016,24(5): 1128-1137
LIU Hui-fang, WANG Han-yu, WANG Jie etc. Modeling of dynamic nonlinear multi-field coupling for precision magnetostrictive actuator[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1128-1137
刘慧芳, 王汉玉, 王洁等. 精密磁致伸缩致动器的动态非线性多场耦合建模[J]. 光学精密工程, 2016,24(5): 1128-1137 DOI: 10.3788/OPE.20162405.1128.
LIU Hui-fang, WANG Han-yu, WANG Jie etc. Modeling of dynamic nonlinear multi-field coupling for precision magnetostrictive actuator[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1128-1137 DOI: 10.3788/OPE.20162405.1128.
为提高超磁致伸缩致动器(GMA)的精度
描述其在动态和准静态环境下的复杂磁滞行为
设计了具有精密位移输出的GMA
建立了包含磁滞及涡流损失的动态非线性多场耦合模型。首先
采用模块化方法设计了GMA;然后
利用热力学理论和能量守恒定律
建立了超磁致伸缩材料非线性多场耦合本构模型;最后
通过分析材料非线性本构行为与系统结构动态行为间的耦合过程
提出了GMA的动态非线性多场耦合模型。实验分析了能量损失及预紧力对系统特性的影响规律。结果表明:预紧力可改善系统输出特性且存在最佳预紧状态;建立的模型能够较准确预测位移
平均相对误差约为4.5%。另外
随着频率增加
异常和涡流能量损失以及磁滞量会增大
磁滞行为源于磁畴不可逆运动过程中的能量损失。实验还显示:对于精密GMA系统
不能忽略高频涡流效应。建立的模型较准确地描述了动态及准静态环境下GMA的复杂磁滞行为
由于考虑了材料本构行为耦合和系统动态行为耦合
进一步提高了GMA系统的精度。
To improve the precision of a Giant Magnetostrictive Actuator (GMA) used in a precision machining field and to describe its complex hysteresis behavior under dynamic and quasi-static conditions
a GMA with an accurate displacement output was designed. By consideration of both the eddy current losses and hysteresis
a dynamic nonlinear model with multi-field coupling effects was also established. Relationships among energy loss
hysteresis and frequency and other working performance were studied. Firstly
the GMA was designed through the modular method. Then
based on the thermodynamic theory and energy conservation law
a nonlinear multi-field coupling constitutive model for giant magnetostrictive materials was established. Finally
a nonlinear multi-field coupling dynamic model for the GMA was proposed through analyzing the coupling process between the nonlinear constitutive behaviors of materials and the dynamic behavior of system structure. The effects of energy loss and pretightening force on the system characteristics were analyzed. The experiment results show that pretightening force improves the output characteristic of GMA and there is an optimal preloaded state. The model predicts the displacement accurately and the average relative error is about 4.5%. The hysteresis behavior is attributed to the energy losses generated in the irreversible motion process of domain. With the increase of frequency
the abnormal and eddy current energy losses and hysteresis increase. The eddy current effect can not be ignored when precision GMA is under a high frequency. The model describes the complex hysteresis behaviors of the GMA under dynamic and quasi-static conditions accurately. As the material's constitutive coupling and structure's dynamic behavior coupling are considered
the precision of the GMA is improved greatly.
LIU H F, WANG SH J, ZHANG Y, et al.. Study on the giant magnetostrictive vibration-power generation method for battery-less tire pressure monitoring system[J]. Journal of Mechanical Engineering Science, 2015, 229(9):1639-1651.
WANG X L,KNAPP P, VAYNMAN S, et al.. Experimental study and analytical model of deformation of magnetostrictive films as applied to mirrors for x-ray space telescopes[J]. Applied Optics, 2014, 53(24):6256-6267.
张雷,邬义杰,刘孝亮,等. 用于异形孔精密加工的超磁致伸缩构件的线性化迟滞建模[J]. 光学精密工程, 2012, 20(2):287-294. ZHANG L, WU Y J, LIU X L,et al.. Linearity hysteresis model of giant magnetostrictive components for non-cylindrical hole precision machining[J]. Opt. Precision Eng., 2012, 20(2):287-294. (in Chinese)
LIU H F, WANG S J, MA C, et al.. Study on an actuator with giant magnetostrictive materials for driving galvanometer in selective laser sintering precisely[J]. International Journal of Mechatronics and Manufacturing Systems, 2015, 8(3/4):116-133.
JIN K, KOU Y, ZHENG X J. A nonlinear magneto-thermo-elastic coupled hysteretic constitutive model for magnetostrictive alloys[J]. Journal of Magnetism and Magnetic Material, 2012, 324:1954-1961.
LIANG Y R, ZHENG X J. Experimental researches on magneto-thermo mechanical characterization of Terfenol-D[J]. Acta Mechanica Solida Sinica, 2007, 20:283-288.
DAVINO D, GIUSTINIANI A, VISONE C. Compensation of magnetostrictive hysteresis by arduino:floating versus fixed-point performances[J]. IEEE Transactions on Magnetics, 2014, 50(11):2506304.
杨斌堂,赵寅,彭志科,等. 基于Prandtl-Ishlinskii模型的超磁致伸缩驱动器实时磁滞补偿控制[J]. 光学精密工程,2013, 21(1):124-130. YANG B T, ZHAO Y, PENG ZH K,et al.. Real-time compensation control of hysteresis based on Prandtl-Ishlinskii operator for GMA[J]. Opt. Precision Eng., 2013, 21(1):124-130. (in Chinese)
曾杰伟,苏兰海,徐立坪,等. 逆磁致伸缩效应钢板内应力检测技术研究[J]. 机械工程学报,2014, 50(8):17-22. ZENG J W, SU L H, XU L P, et al.. Research on the stress measurement of steel plate based on inverse magnetostrictive effect[J]. Journal of Mechanical Engineering, 2014, 50(8):17-22. (in Chinese)
TALEBIAN S, HOJJAT Y, GHODSI M, et al.. Study on classical and excess eddy currents losses of Terfenol-D[J]. Journal of Magnetism and Magnetic Materials, 2015, 388:150-159.
司朝润,张贤杰,唐兴龄,等. Terfenol-D棒磁致伸缩特性及可加工性能研究[J]. 功能材料,2014,45(17):17120-17124. SI CH R, ZHANG X J, TANG X L,et al.. Magnetostrictive property and machinability of Terfenol-D rod[J]. Functional Materials, 2014, 45(17):17120-17124. (in Chinese)
CAO Q H, CHEN D F, LI C, et al.. A review of the magnetomechanical modeling of magnetostriction materials[J]. Pervasive Computing and the Networked World, 2014, 8351:1-7.
JILES D C, ATHERTON D L. Theory of ferromagnetic hysteresis[J]. Journal of Magnetism and Magnetic Materials, 1986, 61:48-60.
ZHU Y C, LI Y S. A hysteresis nonlinear model of giant magnetostrictive transducer[J]. Journal of Intelligent Material Systems and Structures, 2015, 26(16):2242-2255.
DAPINO M J, SMITH R C, CALKINS F T,et al.. A coupled magnetomechanical model for magnetostrictive transducers and its application to Villari-effect sensors[J]. Intelligent Material Systems and Structures, 2002, 13:737-747.
朱玉川,徐鸿翔,陈龙,等. 基于双曲正切函数磁滞算子的超磁致伸缩驱动器动态Preisach模型[J]. 机械工程学报, 2014,50(6):165-170. ZHU Y CH, XU H X, CHEN L,et al.. Dynamic Preisach model in giant magnetostrictive actuator based on hyperbolic tangent function hysteresis operators[J]. Journal of Mechanical Engineering, 2014, 50(6):165-170. (in Chinese)
ABDELMADJID N, ELAMINE N, MOULOUD F. Neural network-DFT based model for magnetostrictive hysteresis[J]. International Journal of Applied Electromagnetics and Mechanics, 2013, 42(3):343-348.
喻曹丰,王传礼,魏本柱,等. 超磁致伸缩驱动精密定位平台的动态递归神经网络前馈-PD反馈控制[J]. 光学精密工程. 2015,23(10):417-424. YU C F, WANG CH L, WEI B ZH,et al.. DRNN feed forward-PD feedback control for precision positioning stage based on giant magnetostrictive actuator[J]. Opt. Precision Eng., 2015,23(10):417-424. (in Chinese)
孟爱华,刘成龙,陈文艺,等. 超磁致伸缩致动器的小脑神经网络前馈逆补偿-模糊PID控制[J]. 光学精密工程, 2015, 23(3):753-759. MENG A H, LIU CH L, CHEN W Y,et al.. CMAC feed forward inverse compensation-fuzzy PID control for giant magnetostrictive actuator[J]. Opt. Precision Eng., 2015, 23(3):753-759. (in Chinese)
LEES Y, PARK M, BAEK J. Modeling of dynamic hysteresis based on takagi-sugeno fuzzy duhem model[J].International Journal of Fuzzy Logic and Intelligent Systems, 2013, 13(4):277-283.
0
浏览量
594
下载量
11
CSCD
关联资源
相关文章
相关作者
相关机构