浏览全部资源
扫码关注微信
1. 厦门大学 航空航天学院,福建 厦门,361005
2. 厦门理工学院 机械与汽车工程学院,福建 厦门,361024
收稿日期:2015-11-03,
修回日期:2016-01-04,
纸质出版日期:2016-05-25
移动端阅览
郑高峰, 孙玲玲, 郑艺玲等. 鞘气聚焦电纺射流喷射的电学特性[J]. 光学精密工程, 2016,24(5): 1138-1147
ZHENG Gao-feng, SUN Ling-ling, ZHENG Yi-ling etc. Electrical properties of electrospinning under sheath gas focusing[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1138-1147
郑高峰, 孙玲玲, 郑艺玲等. 鞘气聚焦电纺射流喷射的电学特性[J]. 光学精密工程, 2016,24(5): 1138-1147 DOI: 10.3788/OPE.20162405.1138.
ZHENG Gao-feng, SUN Ling-ling, ZHENG Yi-ling etc. Electrical properties of electrospinning under sheath gas focusing[J]. Editorial Office of Optics and Precision Engineering, 2016,24(5): 1138-1147 DOI: 10.3788/OPE.20162405.1138.
开展了鞘气聚焦高效率纺丝射流喷射的研究。搭建了带有微弱电流检测模块的鞘气聚焦电纺喷射实验平台
讨论了鞘气约束作用下纺丝射流的流变与运动行为
结合理论模型分析了鞘气供气压强等工艺参数对纺丝电流的作用规律。实验显示:鞘气聚焦促进了射流的拉伸细化
降低了射流喷射临界启动电压
减小了纳米纤维的直径、提高了电纺纳米纤维的均匀性。当供气压强由0 kPa上升到50 kPa时
射流喷射平均临界启动电压由10.2 kV降低至2.9 kV;施加电压为4 kV时
经4.4 s产生峰值为532 nA的冲击电流
稳定喷射阶段纺丝电流为300~500 nA。鞘气聚焦还减小了射流直径和表面电荷密度
纺丝电流减小至没有鞘气聚焦时纺丝电流的1/7;纺丝电流随着鞘气压强、喷头至收集板距离的增加而降低
随着施加电压和溶液质量百分数的增加而增大。得到的结果表明:鞘气聚焦抑制了射流喷射过程的电荷干扰
减小了纺丝射流直径
提高了静电纺丝的稳定性。该方法为改善静电纺丝技术的控制水平提供了新的途径。
How to increase the ejection efficiency of an electrospinning jet by inducing sheath gas focusing was investigated
and an electrospinning experimental setup with sheath gas focusing was built up. The ejection and movement behaviors of electrospinning jet under the sheath gas was analyzed. The effect of some of technological parameters such as the pressure of sheath gas on a electrospinning current was studied based on the theoretical model. The experiments indicate that the sheath gas promotes the stretching and thinning of the electrospinning jet
by which the critical voltage of electrospinning and the diameter and distribution area of a nanofiber have been decreased. As the pressure of sheath gas is increased from 0 kPa to 50 kPa
the critical voltage of electrospinning decreases from 10.2 kV to 2.9 kV. When the applied voltage is 4 kV
the front-end of electrospinning jet takes 4.4 s to reach a collector and produces a peak current of 532 nA. The electrospinning current ranges from 300 nA to 500 nA during the stable ejection process. Moreover
both the diameter and surface charge density of electrospinning jet have been decreased by the sheath gas focusing
and the electrospinning current is only one seventh of that without sheath gas. Under the sheath gas focusing
the electrospinning current decreases with the increasing of gas pressure and the distance between nozzle and collector
but increases with the increasing of applied voltage and the concentration of polymer solution. It concludes that the sheath gas focusing restrains the charge interferences in electrospinning processing
decreases the diameter of electrospinning
improves both the injection stability of electrospinning and uniformity of nanofiber. This work provides a good way to improve the control level of electrospinning technology.
KIM J, OH H, KIM S S. Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies[J].J. Aerosol Sci., 2008, 39(9):819-825.
XU T, ZHAO W X, ZHU J M,et al.. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology[J]. Biomaterials, 2013, 34(1):130-139.
于永泽, 刘媛媛, 陈伟华, 等. 溶剂挥发对静电纺丝纳米纤维支架直径与沉积的影响[J]. 光学精密工程, 2014, 22(2):420-425. YU Y Z, LIU Y Y, CHEN W H, et al.. Effect of solvent evaporation on diameter and deposition of nanofibrous scaffold in electrospinning[J].Opt. Precision Eng., 2014, 22(2):420-425. (in Chinese)
SEKITANI T, TAKAMIYA M, NOGUCHI Y, et al.. A large-area wireless power-transmission sheet using printes organic transistors and plastic MEMS switches[J]. Nature Mater., 2007, 6:413-417.
王晗, 郑高峰, 孙道恒. 电纺不同直径纳米纤维薄膜的空气过滤性能[J]. 功能材料与器件学报, 2008,14(1):153-157. WANG H, ZHENG G F, SUN D H. Air filtration performance of nanofibrous membranes electrospuned with different nanofiber diameters[J]. J Fun. Mater. Devices, 2008, 14(1):153-157. (in Chinese)
郑高峰, 何广奇, 刘海燕, 等. 电纺氧化锌纳米纤维乙醇、丙酮气敏传感器[J]. 光学精密工程, 2014, 22(6):1555-1561. ZHENG G F, HE G Q, LIU H Y, et al.. Electrospun zinc oxide nanofibrous gas sensors for alcohol and acetone[J]. Opt. Precision Eng., 2014, 22(6):1555-1561. (in Chinese)
李文望, 郑高峰, 王翔, 等. 电纺直写纳米纤维在图案化基底的定位沉积[J]. 光学精密工程, 2010, 18(10):2231-2238. LI W W, ZHENG G F, WANG X, et al.. Position deposition of electrospinning direct-writing nanofiber on pattern substrate[J]. Opt. Precision Eng., 2010, 18(10):2231-2238. (in Chinese)
刘大利, 郭俊, 方淑慧, 等. 使用目标多特征识别的纳米纤维制造在线监测系统[J]. 光学精密工程, 2012, 20(2):360-368. LIU D L, GUO J, FANG SH H, et al.. On-line monitor system for nanoscale fiber manufacturing based on multi-featured pattern recognition[J].Opt. Precision Eng., 2012, 20(2):360-368. (in Chinese)
PERSANO L, CAMPOSEO A, TEKMEN C, et al.. Industrial upscaling of electrospinning and applications of polymer nanofibers:a review[J]. Macromol. Mater. Eng., 2013,298(5):504-520.
司廷, 田瑞军, 李广滨, 等. 电场作用下流动聚焦的实验研究[J]. 力学学报, 2012, 43(6):1030-1036. SI T, TIAN R J, LI G B, et al.. Experimental study of the flow focusing under an electric field[J]. Chin. J. Theor. App. Mech. Pol., 2012, 43(6):1030-1036. (in Chinese)
赵扬, 姜佳昕, 陈冬阳, 等. 气辅式多射流纳米颗粒高效静电雾化喷射[J]. 光学精密工程, 2015, 23(4):1062-1069. ZHAO Y, JIANG J X, CHEN D Y, et al.. High efficiency multi-jet eletrospraying of nano particles with assisted gas[J]. Opt. Precision Eng., 2015, 23(4):1062-1069. (in Chinese)
LIU W, YAO Y, LIN Y, et al.. Electrospinning assisted by gas jet for preparing ultrafine poly (vinyl alcohol) fibres[J]. Iran. Polym. J., 2009, 18:89-96.
HARTMAN R P A, BORRA J P, BRUNNER D J,et al.. Electrohydrodynamic atomization in the cone-jet mode physical modeling of the liquid cone and jet[J]. J. Aerosol Sci., 1999, 30(7):823-849.
GAÑÁN-CALVO A M, FERRERA C, MONTANERO J M. Universal size and shape of viscous capillary jets:application to gas-focused microjets[J]. J. Fluid Mech., 2011,670:427-438.
郑高峰, 王凌云, 孙道恒. 基于近场静电纺丝的微/纳米结构直写技术[J]. 纳米技术与精密工程,2008,6(1):20-23. ZHENG G F, WANG L Y, SUN D H. Micro/nano-structure direct-write technology based on near-field electrospinning[J]. Nanotech. Precision Eng., 2008, 6(1):20-23. (in Chinese)
KADOMAE Y, AMAGASA M, SUGIMOTO M, et al.. Effect of electric current on beads formation in electrospinning of poly(vinyl alcohol)[J]. Int. Polym. Proc., 2008, 23(4):377-384.
MUHAMMAD M M, FERRY I, KHAIRURRIJAL, et al.. A constant-current electrospinning system for production of high quality nanofibers[J]. Rev. Sci. Instrum., 2008, 79(9):093904.
BHATTACHARJEE P K, SCHNEIDER T M, BRENNER M P, et al.. On the measured current in eletrospinning[J]. J. Appl. Phys., 2010, 107(4):044306.
VERDOOLD S, AGOSTINHO L, YURTERI C, et al.. A generic electrospray classification[J]. J. Aerosol. Sci., 2014, 67:87-103.
TAUBERT A. Electrospinning of ionogels:current status and future perspectives[J]. Eur. J. Inorg. Chem., 2015(7):1148-1159.
李文望, 郑高峰, 黄辉蓝, 等. 电纺直写单根纳米纤维喷射电流的特性[J]. 厦门大学学报:自然科学版, 2011, 50(3):570-573. LI W W, ZHENG G F, HUANG H L, et al.. Jet current character for electrospinning dirct-writing single nanofiber[J]. J. Xiamen Univ. (Nat. Sci.), 2011, 50(3):570-573. (in Chinese)
THERON S A, ZUSSMAN E, YARIN A L. Experimental investigation of the governing parameters in the electrospinning of polymer solutions[J].Polymer, 2004, 45(6):2017-2030.
MOON J K, SONG M W, PAK H K. Investigation of surface charge density on solid-liquid interfaces by modulating the electrical double layer[J].J. Phys. Condens. Mat., 2015, 27(19):194102.
WANG X, ZHENG G F, LUO Z W, et al.. Current characteristics of various ejection modes in electrohydrodynamic printing[J]. AIP Adv., 2015, 5(12):127120.
0
浏览量
508
下载量
2
CSCD
关联资源
相关文章
相关作者
相关机构